Gangting Huang, Qichen Wu, Youbiao Su, Yunfei Li, Shilin Xie
{"title":"采用新循环迭代模式的新型快速四点雨流循环计数算法,用于疲劳寿命估算","authors":"Gangting Huang, Qichen Wu, Youbiao Su, Yunfei Li, Shilin Xie","doi":"10.1108/ec-11-2023-0814","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p> In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration mode is proposed.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p> In this new algorithm, the loop iteration mode is simplified by reducing the number of iterations, tests and deletions. The high efficiency of the new algorithm makes it a preferable candidate in fatigue life online estimation of structural health monitoring systems.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p> The extensive simulation results show that the extracted cycles by the new FFRA are the same as those by the four-point rainflow cycle counting algorithm (FRA) and the three-point rainflow cycle counting algorithm (TRA). Especially, the simulation results indicate that the computation efficiency of the FFRA has improved an average of 12.4 times compared to the FRA and an average of 8.9 times compared to the TRA. Moreover, the equivalence of cycle extraction results between the FFRA and the FRA is proved mathematically by utilizing some fundamental properties of the rainflow algorithm. Theoretical proof of the efficiency improvement of the FFRA in comparison to the FRA is also given.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p> This merit makes the FFRA preferable in online monitoring systems of structures where fatigue life estimation needs to be accomplished online based on massive measured data. It is noticeable that the high efficiency of the FFRA attributed to the simple loop iteration, which provides beneficial guidance to improve the efficiency of existing algorithms.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new fast four-point rainflow cycle counting algorithm by employing a new loop iteration mode for fatigue life estimation\",\"authors\":\"Gangting Huang, Qichen Wu, Youbiao Su, Yunfei Li, Shilin Xie\",\"doi\":\"10.1108/ec-11-2023-0814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p> In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration mode is proposed.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p> In this new algorithm, the loop iteration mode is simplified by reducing the number of iterations, tests and deletions. The high efficiency of the new algorithm makes it a preferable candidate in fatigue life online estimation of structural health monitoring systems.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p> The extensive simulation results show that the extracted cycles by the new FFRA are the same as those by the four-point rainflow cycle counting algorithm (FRA) and the three-point rainflow cycle counting algorithm (TRA). Especially, the simulation results indicate that the computation efficiency of the FFRA has improved an average of 12.4 times compared to the FRA and an average of 8.9 times compared to the TRA. Moreover, the equivalence of cycle extraction results between the FFRA and the FRA is proved mathematically by utilizing some fundamental properties of the rainflow algorithm. Theoretical proof of the efficiency improvement of the FFRA in comparison to the FRA is also given.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p> This merit makes the FFRA preferable in online monitoring systems of structures where fatigue life estimation needs to be accomplished online based on massive measured data. It is noticeable that the high efficiency of the FFRA attributed to the simple loop iteration, which provides beneficial guidance to improve the efficiency of existing algorithms.</p><!--/ Abstract__block -->\",\"PeriodicalId\":50522,\"journal\":{\"name\":\"Engineering Computations\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ec-11-2023-0814\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-11-2023-0814","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
目的 为了提高四点雨流算法的计算效率,提出了一种采用新型循环迭代模式的新型快速四点雨流循环计数算法(FFRA)。研究结果 大量仿真结果表明,新的 FFRA 算法提取的循环次数与四点雨流循环计数算法(FRA)和三点雨流循环计数算法(TRA)相同。尤其是仿真结果表明,FFRA 的计算效率比 FRA 平均提高了 12.4 倍,比 TRA 平均提高了 8.9 倍。此外,利用雨流算法的一些基本特性,从数学上证明了 FFRA 和 FRA 的循环提取结果是等价的。原创性/价值 这一优点使 FFRA 成为结构在线监测系统的首选,在这种系统中,需要根据大量测量数据在线完成疲劳寿命估算。值得注意的是,FFRA 的高效率归功于简单的循环迭代,这为提高现有算法的效率提供了有益的指导。
A new fast four-point rainflow cycle counting algorithm by employing a new loop iteration mode for fatigue life estimation
Purpose
In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration mode is proposed.
Design/methodology/approach
In this new algorithm, the loop iteration mode is simplified by reducing the number of iterations, tests and deletions. The high efficiency of the new algorithm makes it a preferable candidate in fatigue life online estimation of structural health monitoring systems.
Findings
The extensive simulation results show that the extracted cycles by the new FFRA are the same as those by the four-point rainflow cycle counting algorithm (FRA) and the three-point rainflow cycle counting algorithm (TRA). Especially, the simulation results indicate that the computation efficiency of the FFRA has improved an average of 12.4 times compared to the FRA and an average of 8.9 times compared to the TRA. Moreover, the equivalence of cycle extraction results between the FFRA and the FRA is proved mathematically by utilizing some fundamental properties of the rainflow algorithm. Theoretical proof of the efficiency improvement of the FFRA in comparison to the FRA is also given.
Originality/value
This merit makes the FFRA preferable in online monitoring systems of structures where fatigue life estimation needs to be accomplished online based on massive measured data. It is noticeable that the high efficiency of the FFRA attributed to the simple loop iteration, which provides beneficial guidance to improve the efficiency of existing algorithms.
期刊介绍:
The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice.
For more information visit: http://www.emeraldgrouppublishing.com/ec.htm