多项式和有理数逼近的几何方法

IF 0.9 2区 数学 Q2 MATHEMATICS
Christopher J Bishop, Kirill Lazebnik
{"title":"多项式和有理数逼近的几何方法","authors":"Christopher J Bishop, Kirill Lazebnik","doi":"10.1093/imrn/rnae082","DOIUrl":null,"url":null,"abstract":"We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"76 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometric Approach to Polynomial and Rational Approximation\",\"authors\":\"Christopher J Bishop, Kirill Lazebnik\",\"doi\":\"10.1093/imrn/rnae082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过证明多项式和有理近似值具有简单的几何结构,强化了魏尔斯特拉斯(Weierstrass)、伦格(Runge)和梅格利安(Mergelyan)的经典近似定理。特别是,当近似一个紧凑集合 $K$ 上的函数 $f$ 时,我们的近似值的临界点可以被认为位于包含 $K$ 的任何给定域中,而所有临界值则位于 $f(K)$ 的多项式凸壳的任何给定邻域中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometric Approach to Polynomial and Rational Approximation
We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信