{"title":"多项式和有理数逼近的几何方法","authors":"Christopher J Bishop, Kirill Lazebnik","doi":"10.1093/imrn/rnae082","DOIUrl":null,"url":null,"abstract":"We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"76 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometric Approach to Polynomial and Rational Approximation\",\"authors\":\"Christopher J Bishop, Kirill Lazebnik\",\"doi\":\"10.1093/imrn/rnae082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Geometric Approach to Polynomial and Rational Approximation
We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $f$ on a compact set $K$, the critical points of our approximants may be taken to lie in any given domain containing $K$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.