基于双方图的投影聚类与高光谱图像的局部区域引导

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yongshan Zhang;Guozhu Jiang;Zhihua Cai;Yicong Zhou
{"title":"基于双方图的投影聚类与高光谱图像的局部区域引导","authors":"Yongshan Zhang;Guozhu Jiang;Zhihua Cai;Yicong Zhou","doi":"10.1109/TMM.2024.3394975","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) clustering is challenging to divide all pixels into different clusters because of the absent labels, large spectral variability and complex spatial distribution. Anchor strategy provides an attractive solution to the computational bottleneck of graph-based clustering for large HSIs. However, most existing methods require separated learning procedures and ignore noisy as well as spatial information. In this paper, we propose a bipartite graph-based projected clustering (BGPC) method with local region guidance for HSI data. To take full advantage of spatial information, HSI denoising to alleviate noise interference and anchor initialization to construct bipartite graph are conducted within each generated superpixel. With the denoised pixels and initial anchors, projection learning and structured bipartite graph learning are simultaneously performed in a one-step learning model with connectivity constraint to directly provide clustering results. An alternating optimization algorithm is devised to solve the formulated model. The advantage of BGPC is the joint learning of projection and bipartite graph with local region guidance to exploit spatial information and linear time complexity to lessen computational burden. Extensive experiments demonstrate the superiority of the proposed BGPC over the state-of-the-art HSI clustering methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9551-9563"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite Graph-Based Projected Clustering With Local Region Guidance for Hyperspectral Imagery\",\"authors\":\"Yongshan Zhang;Guozhu Jiang;Zhihua Cai;Yicong Zhou\",\"doi\":\"10.1109/TMM.2024.3394975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) clustering is challenging to divide all pixels into different clusters because of the absent labels, large spectral variability and complex spatial distribution. Anchor strategy provides an attractive solution to the computational bottleneck of graph-based clustering for large HSIs. However, most existing methods require separated learning procedures and ignore noisy as well as spatial information. In this paper, we propose a bipartite graph-based projected clustering (BGPC) method with local region guidance for HSI data. To take full advantage of spatial information, HSI denoising to alleviate noise interference and anchor initialization to construct bipartite graph are conducted within each generated superpixel. With the denoised pixels and initial anchors, projection learning and structured bipartite graph learning are simultaneously performed in a one-step learning model with connectivity constraint to directly provide clustering results. An alternating optimization algorithm is devised to solve the formulated model. The advantage of BGPC is the joint learning of projection and bipartite graph with local region guidance to exploit spatial information and linear time complexity to lessen computational burden. Extensive experiments demonstrate the superiority of the proposed BGPC over the state-of-the-art HSI clustering methods.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"9551-9563\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510642/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10510642/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于高光谱图像(HSI)没有标签、光谱变化大且空间分布复杂,因此将所有像素划分为不同的聚类具有挑战性。锚定策略为解决基于图的大型 HSI 聚类的计算瓶颈问题提供了有吸引力的解决方案。然而,现有的大多数方法都需要单独的学习程序,而且忽略了噪声和空间信息。在本文中,我们提出了一种基于双方位图的投影聚类(BGPC)方法,该方法具有对人机交互数据的局部区域引导功能。为了充分利用空间信息,我们在每个生成的超像素中进行了人脸图像去噪以减轻噪声干扰,并进行了锚初始化以构建双元图。利用去噪后的像素和初始锚点,投影学习和结构化双元图学习在一个具有连接性约束的一步学习模型中同时进行,从而直接提供聚类结果。设计了一种交替优化算法来求解所建立的模型。BGPC 的优势在于投影和双元图的联合学习,并通过局部区域引导来利用空间信息,而线性时间复杂度则减轻了计算负担。广泛的实验证明了所提出的 BGPC 优于最先进的人机交互聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bipartite Graph-Based Projected Clustering With Local Region Guidance for Hyperspectral Imagery
Hyperspectral image (HSI) clustering is challenging to divide all pixels into different clusters because of the absent labels, large spectral variability and complex spatial distribution. Anchor strategy provides an attractive solution to the computational bottleneck of graph-based clustering for large HSIs. However, most existing methods require separated learning procedures and ignore noisy as well as spatial information. In this paper, we propose a bipartite graph-based projected clustering (BGPC) method with local region guidance for HSI data. To take full advantage of spatial information, HSI denoising to alleviate noise interference and anchor initialization to construct bipartite graph are conducted within each generated superpixel. With the denoised pixels and initial anchors, projection learning and structured bipartite graph learning are simultaneously performed in a one-step learning model with connectivity constraint to directly provide clustering results. An alternating optimization algorithm is devised to solve the formulated model. The advantage of BGPC is the joint learning of projection and bipartite graph with local region guidance to exploit spatial information and linear time complexity to lessen computational burden. Extensive experiments demonstrate the superiority of the proposed BGPC over the state-of-the-art HSI clustering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信