{"title":"稀疏组 $$ell _0$$ 优化问题的子空间牛顿法","authors":"Shichen Liao, Congying Han, Tiande Guo, Bonan Li","doi":"10.1007/s10898-024-01396-y","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the <span>\\(\\ell _0\\)</span> and <span>\\(\\ell _{2,0}\\)</span> norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a <span>\\(\\gamma \\)</span>-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group <span>\\(\\ell _0\\)</span> optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace Newton method for sparse group $$\\\\ell _0$$ optimization problem\",\"authors\":\"Shichen Liao, Congying Han, Tiande Guo, Bonan Li\",\"doi\":\"10.1007/s10898-024-01396-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the <span>\\\\(\\\\ell _0\\\\)</span> and <span>\\\\(\\\\ell _{2,0}\\\\)</span> norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a <span>\\\\(\\\\gamma \\\\)</span>-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group <span>\\\\(\\\\ell _0\\\\)</span> optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01396-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01396-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Subspace Newton method for sparse group $$\ell _0$$ optimization problem
This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the \(\ell _0\) and \(\ell _{2,0}\) norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a \(\gamma \)-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group \(\ell _0\) optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.