核子的微宇宙模型

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Michael Cramer Andersen
{"title":"核子的微宇宙模型","authors":"Michael Cramer Andersen","doi":"10.1142/s0217732324500536","DOIUrl":null,"url":null,"abstract":"<p>This study explores the age-old quest to construct a geometric model of a quantum particle. While static classical particle models have largely been dismissed, the focus has now shifted to intricate dynamic models that hold the promise of reconciling general relativity with quantum mechanics. We propose that matter particles can be described as radiation confined within dynamically curved spacetime regions, without the need for quantization of space and time, and using standard field equations and natural Planck units. Specifically, we investigate a cyclic or oscillating radiation-dominated micro-cosmos undergoing repeated bouncing. Our methodology employs integration, with carefully defined initial conditions. The results include several observable properties characteristic of quantum particles. We calculate the total mass, revealing a compelling inverse proportionality between mass and radius identical with the de Broglie relationship. Applying this model to protons, we discover a profound and surprisingly simple relationship between the proton’s radius and mass expressed in Planck units. This enables a definition of the proton radius that aligns remarkably well with the 2018 CODATA value. Furthermore, our analysis demonstrates that the radial density profile of the proton (or nucleon), averaged over a cycle time, increases toward the center. The problem of embedding the micro-cosmos within a background spacetime is also described. These results underscore the relevance of general relativity in the domain of nuclear physics. Moreover, the model offers a fresh perspective that can stimulate new ideas in the ongoing quest to unify general relativity with quantum physics.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"66 3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-cosmos model of a nucleon\",\"authors\":\"Michael Cramer Andersen\",\"doi\":\"10.1142/s0217732324500536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the age-old quest to construct a geometric model of a quantum particle. While static classical particle models have largely been dismissed, the focus has now shifted to intricate dynamic models that hold the promise of reconciling general relativity with quantum mechanics. We propose that matter particles can be described as radiation confined within dynamically curved spacetime regions, without the need for quantization of space and time, and using standard field equations and natural Planck units. Specifically, we investigate a cyclic or oscillating radiation-dominated micro-cosmos undergoing repeated bouncing. Our methodology employs integration, with carefully defined initial conditions. The results include several observable properties characteristic of quantum particles. We calculate the total mass, revealing a compelling inverse proportionality between mass and radius identical with the de Broglie relationship. Applying this model to protons, we discover a profound and surprisingly simple relationship between the proton’s radius and mass expressed in Planck units. This enables a definition of the proton radius that aligns remarkably well with the 2018 CODATA value. Furthermore, our analysis demonstrates that the radial density profile of the proton (or nucleon), averaged over a cycle time, increases toward the center. The problem of embedding the micro-cosmos within a background spacetime is also described. These results underscore the relevance of general relativity in the domain of nuclear physics. Moreover, the model offers a fresh perspective that can stimulate new ideas in the ongoing quest to unify general relativity with quantum physics.</p>\",\"PeriodicalId\":18752,\"journal\":{\"name\":\"Modern Physics Letters A\",\"volume\":\"66 3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217732324500536\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732324500536","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了构建量子粒子几何模型的古老探索。尽管静态经典粒子模型在很大程度上已被否定,但现在的焦点已转移到复杂的动态模型上,这些模型有望调和广义相对论与量子力学。我们提出,物质粒子可以描述为限制在动态弯曲时空区域内的辐射,而无需量化空间和时间,并使用标准场方程和自然普朗克单位。具体来说,我们研究的是一个循环或振荡的辐射主导的微宇宙,它经历着反复的反弹。我们的研究方法采用积分法,并仔细定义了初始条件。研究结果包括量子粒子的几个可观测特性。我们计算了总质量,揭示了质量与半径之间令人信服的反比关系,与德布罗意关系相同。将这一模型应用于质子,我们发现质子的半径与以普朗克单位表示的质量之间存在着深刻而令人惊讶的简单关系。这使得质子半径的定义与 2018 年 CODATA 数值非常吻合。此外,我们的分析表明,质子(或核子)的径向密度剖面在一个周期时间内的平均值向中心增加。我们还描述了将微宇宙嵌入背景时空的问题。这些结果强调了广义相对论在核物理领域的相关性。此外,该模型还提供了一个崭新的视角,可以激发人们在不断寻求广义相对论与量子物理学统一的过程中产生新的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-cosmos model of a nucleon

This study explores the age-old quest to construct a geometric model of a quantum particle. While static classical particle models have largely been dismissed, the focus has now shifted to intricate dynamic models that hold the promise of reconciling general relativity with quantum mechanics. We propose that matter particles can be described as radiation confined within dynamically curved spacetime regions, without the need for quantization of space and time, and using standard field equations and natural Planck units. Specifically, we investigate a cyclic or oscillating radiation-dominated micro-cosmos undergoing repeated bouncing. Our methodology employs integration, with carefully defined initial conditions. The results include several observable properties characteristic of quantum particles. We calculate the total mass, revealing a compelling inverse proportionality between mass and radius identical with the de Broglie relationship. Applying this model to protons, we discover a profound and surprisingly simple relationship between the proton’s radius and mass expressed in Planck units. This enables a definition of the proton radius that aligns remarkably well with the 2018 CODATA value. Furthermore, our analysis demonstrates that the radial density profile of the proton (or nucleon), averaged over a cycle time, increases toward the center. The problem of embedding the micro-cosmos within a background spacetime is also described. These results underscore the relevance of general relativity in the domain of nuclear physics. Moreover, the model offers a fresh perspective that can stimulate new ideas in the ongoing quest to unify general relativity with quantum physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信