{"title":"稳定曲线模空间上的多项式点数和奇数同调消失 | 数学年鉴","authors":"Jonas Bergström, Carel Faber, Sam Payne","doi":"10.4007/annals.2024.199.3.7","DOIUrl":null,"url":null,"abstract":"<p>We compute the number of $\\mathbb{F}_q$-points on $\\overline{\\mathcal{M}}_{4,n}$ for $n \\leq 3$ and show that it is a polynomial in $q$, using a sieve based on Hasse–Weil zeta functions. As an application, we prove that the rational singular cohomology group $H^k (\\overline{\\mathcal{M}}_{g,n})$ vanishes for all odd $k \\leq 9$. Both results confirm predictions of the Langlands program, via the conjectural correspondence with polarized algebraic cuspidal automorphic representations of conductor $1$, which are classified in low weight. Our vanishing result for odd cohomology resolves a problem posed by Arbarello and Cornalba in the 1990s.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"59 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial point counts and odd cohomology vanishing on moduli spaces of stable curves | Annals of Mathematics\",\"authors\":\"Jonas Bergström, Carel Faber, Sam Payne\",\"doi\":\"10.4007/annals.2024.199.3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compute the number of $\\\\mathbb{F}_q$-points on $\\\\overline{\\\\mathcal{M}}_{4,n}$ for $n \\\\leq 3$ and show that it is a polynomial in $q$, using a sieve based on Hasse–Weil zeta functions. As an application, we prove that the rational singular cohomology group $H^k (\\\\overline{\\\\mathcal{M}}_{g,n})$ vanishes for all odd $k \\\\leq 9$. Both results confirm predictions of the Langlands program, via the conjectural correspondence with polarized algebraic cuspidal automorphic representations of conductor $1$, which are classified in low weight. Our vanishing result for odd cohomology resolves a problem posed by Arbarello and Cornalba in the 1990s.</p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.3.7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.3.7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Polynomial point counts and odd cohomology vanishing on moduli spaces of stable curves | Annals of Mathematics
We compute the number of $\mathbb{F}_q$-points on $\overline{\mathcal{M}}_{4,n}$ for $n \leq 3$ and show that it is a polynomial in $q$, using a sieve based on Hasse–Weil zeta functions. As an application, we prove that the rational singular cohomology group $H^k (\overline{\mathcal{M}}_{g,n})$ vanishes for all odd $k \leq 9$. Both results confirm predictions of the Langlands program, via the conjectural correspondence with polarized algebraic cuspidal automorphic representations of conductor $1$, which are classified in low weight. Our vanishing result for odd cohomology resolves a problem posed by Arbarello and Cornalba in the 1990s.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.