用 Szász-Mirakjan-Kantorovich 算子对函数进行加权逼近的强反演不等式

IF 1.1 3区 数学 Q1 MATHEMATICS
Ivan Gadjev, Parvan E. Parvanov, Rumen Uluchev
{"title":"用 Szász-Mirakjan-Kantorovich 算子对函数进行加权逼近的强反演不等式","authors":"Ivan Gadjev, Parvan E. Parvanov, Rumen Uluchev","doi":"10.1007/s00025-024-02179-3","DOIUrl":null,"url":null,"abstract":"<p>We investigate the weighted approximation of functions in <span>\\(L_p\\)</span>-norm by Kantorovich modifications of the classical Szász-Mirakjan operator, with weights of type <span>\\((1+x)^{\\alpha }\\)</span>, <span>\\(\\alpha \\in {\\mathbb {R}}\\)</span>. By using an appropriate <i>K</i>-functional we prove a strong converse inequality for the weighted error of approximation and characterize it exactly. We prove a Voronovskaya and Bernstein-type inequalities for the Szász-Mirakjan–Kantorovich operator.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Converse Inequality for Weighted Approximation of Functions by the Szász–Mirakjan–Kantorovich Operator\",\"authors\":\"Ivan Gadjev, Parvan E. Parvanov, Rumen Uluchev\",\"doi\":\"10.1007/s00025-024-02179-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the weighted approximation of functions in <span>\\\\(L_p\\\\)</span>-norm by Kantorovich modifications of the classical Szász-Mirakjan operator, with weights of type <span>\\\\((1+x)^{\\\\alpha }\\\\)</span>, <span>\\\\(\\\\alpha \\\\in {\\\\mathbb {R}}\\\\)</span>. By using an appropriate <i>K</i>-functional we prove a strong converse inequality for the weighted error of approximation and characterize it exactly. We prove a Voronovskaya and Bernstein-type inequalities for the Szász-Mirakjan–Kantorovich operator.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02179-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02179-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了经典 Szász-Mirakjan 算子的 Kantorovich 修正在 \(L_p\)-norm 中对函数的加权逼近,其权重类型为 \((1+x)^{\alpha }\), \(\alpha \in {\mathbb {R}}\).通过使用适当的 K 函数,我们证明了加权近似误差的强反向不等式,并准确地描述了它的特征。我们证明了 Szász-Mirakjan-Kantorovich 算子的 Voronovskaya 和 Bernstein 型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Converse Inequality for Weighted Approximation of Functions by the Szász–Mirakjan–Kantorovich Operator

We investigate the weighted approximation of functions in \(L_p\)-norm by Kantorovich modifications of the classical Szász-Mirakjan operator, with weights of type \((1+x)^{\alpha }\), \(\alpha \in {\mathbb {R}}\). By using an appropriate K-functional we prove a strong converse inequality for the weighted error of approximation and characterize it exactly. We prove a Voronovskaya and Bernstein-type inequalities for the Szász-Mirakjan–Kantorovich operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信