有扰动的(p,2)方程和拉普拉斯方程的非线性特征值问题

IF 1.1 3区 数学 Q1 MATHEMATICS
Krzysztof Bień
{"title":"有扰动的(p,2)方程和拉普拉斯方程的非线性特征值问题","authors":"Krzysztof Bień","doi":"10.1007/s00025-024-02176-6","DOIUrl":null,"url":null,"abstract":"<p>We consider two types of nonlinear eigenvalue problems involving Laplace and <i>p</i>-Laplace operators <span>\\((p&gt;2)\\)</span>. The main result establishes the existence of at least two nontrivial weak solutions in the case of the perturbed equation and the existence of a continuous spectrum in the case of the (<i>p</i>, 2)-equation. In both cases, variational methods play a central role in our arguments.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"155 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Eigenvalue Problems for (p, 2)-Equations and Laplace Equations with Perturbations\",\"authors\":\"Krzysztof Bień\",\"doi\":\"10.1007/s00025-024-02176-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider two types of nonlinear eigenvalue problems involving Laplace and <i>p</i>-Laplace operators <span>\\\\((p&gt;2)\\\\)</span>. The main result establishes the existence of at least two nontrivial weak solutions in the case of the perturbed equation and the existence of a continuous spectrum in the case of the (<i>p</i>, 2)-equation. In both cases, variational methods play a central role in our arguments.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02176-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02176-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了涉及拉普拉斯和 p-Laplace 算子 \((p>2)\) 的两类非线性特征值问题。主要结果证明,在扰动方程的情况下,至少存在两个非难弱解,而在(p, 2)方程的情况下,存在连续谱。在这两种情况下,变分法在我们的论证中都发挥了核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Eigenvalue Problems for (p, 2)-Equations and Laplace Equations with Perturbations

We consider two types of nonlinear eigenvalue problems involving Laplace and p-Laplace operators \((p>2)\). The main result establishes the existence of at least two nontrivial weak solutions in the case of the perturbed equation and the existence of a continuous spectrum in the case of the (p, 2)-equation. In both cases, variational methods play a central role in our arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信