无扭无边群是伯尔完全群 | 数学年鉴

IF 5.7 1区 数学 Q1 MATHEMATICS
Gianluca Paolini, Saharon Shelah
{"title":"无扭无边群是伯尔完全群 | 数学年鉴","authors":"Gianluca Paolini, Saharon Shelah","doi":"10.4007/annals.2024.199.3.4","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Borel space of torsion-free abelian groups with domain $\\omega$ is Borel complete, i.e., the isomorphism relation on this Borel space is as complicated as possible, as an isomorphism relation. This solves a long-standing open problem in descriptive set theory, which dates back to the seminal paper on Borel reducibility of Friedman and Stanley from 1989.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"148 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsion-free abelian groups are Borel complete | Annals of Mathematics\",\"authors\":\"Gianluca Paolini, Saharon Shelah\",\"doi\":\"10.4007/annals.2024.199.3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the Borel space of torsion-free abelian groups with domain $\\\\omega$ is Borel complete, i.e., the isomorphism relation on this Borel space is as complicated as possible, as an isomorphism relation. This solves a long-standing open problem in descriptive set theory, which dates back to the seminal paper on Borel reducibility of Friedman and Stanley from 1989.</p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.3.4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.3.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有域 $\omega$ 的无扭无边群的伯尔空间是伯尔完全的,即这个伯尔空间上的同构关系是尽可能复杂的同构关系。这就解决了描述集合论中一个长期悬而未决的问题,这个问题可以追溯到弗里德曼和斯坦利在 1989 年发表的关于 Borel 还原性的开创性论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion-free abelian groups are Borel complete | Annals of Mathematics

We prove that the Borel space of torsion-free abelian groups with domain $\omega$ is Borel complete, i.e., the isomorphism relation on this Borel space is as complicated as possible, as an isomorphism relation. This solves a long-standing open problem in descriptive set theory, which dates back to the seminal paper on Borel reducibility of Friedman and Stanley from 1989.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信