复合仓本模型中弱耦合的同步性

Moritz Thümler, Shesha G. M. Srinivas, Malte Schröder, Marc Timme
{"title":"复合仓本模型中弱耦合的同步性","authors":"Moritz Thümler, Shesha G. M. Srinivas, Malte Schröder, Marc Timme","doi":"arxiv-2404.19637","DOIUrl":null,"url":null,"abstract":"We present the finite-size Kuramoto model analytically continued from real to\ncomplex variables and analyze its collective dynamics. For strong coupling,\nsynchrony appears through locked states that constitute attractors, as for the\nreal-variable system. However, synchrony persists in the form of\n\\textit{complex locked states} for coupling strengths $K$ below the transition\n$K^{(\\text{pl})}$ to classical \\textit{phase locking}. Stable complex locked\nstates indicate a locked sub-population of zero mean frequency in the\nreal-variable model and their imaginary parts help identifying which units\ncomprise that sub-population. We uncover a second transition at\n$K'<K^{(\\text{pl})}$ below which complex locked states become linearly unstable\nyet still exist for arbitrarily small coupling strengths.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrony for weak coupling in the complexified Kuramoto model\",\"authors\":\"Moritz Thümler, Shesha G. M. Srinivas, Malte Schröder, Marc Timme\",\"doi\":\"arxiv-2404.19637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the finite-size Kuramoto model analytically continued from real to\\ncomplex variables and analyze its collective dynamics. For strong coupling,\\nsynchrony appears through locked states that constitute attractors, as for the\\nreal-variable system. However, synchrony persists in the form of\\n\\\\textit{complex locked states} for coupling strengths $K$ below the transition\\n$K^{(\\\\text{pl})}$ to classical \\\\textit{phase locking}. Stable complex locked\\nstates indicate a locked sub-population of zero mean frequency in the\\nreal-variable model and their imaginary parts help identifying which units\\ncomprise that sub-population. We uncover a second transition at\\n$K'<K^{(\\\\text{pl})}$ below which complex locked states become linearly unstable\\nyet still exist for arbitrarily small coupling strengths.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.19637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.19637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了从实变到复变的有限大小仓本模型,并对其集体动力学进行了分析。对于强耦合,同步性是通过构成吸引子的锁定状态出现的,就像对于实变系统一样。然而,当耦合强度 $K$ 低于向经典文本{相位锁定}过渡的 $K^{(\text{pl})}$ 时,同步性以文本{复数锁定状态}的形式持续存在。稳定的复数锁相态表明在有变数模型中存在一个平均频率为零的锁相子群,它们的虚部有助于确定哪些单元组成了这个子群。我们发现了在K'本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Synchrony for weak coupling in the complexified Kuramoto model
We present the finite-size Kuramoto model analytically continued from real to complex variables and analyze its collective dynamics. For strong coupling, synchrony appears through locked states that constitute attractors, as for the real-variable system. However, synchrony persists in the form of \textit{complex locked states} for coupling strengths $K$ below the transition $K^{(\text{pl})}$ to classical \textit{phase locking}. Stable complex locked states indicate a locked sub-population of zero mean frequency in the real-variable model and their imaginary parts help identifying which units comprise that sub-population. We uncover a second transition at $K'
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信