{"title":"节俭的拆分算子:表示、最小提升和收敛","authors":"Martin Morin, Sebastian Banert, Pontus Giselsson","doi":"10.1137/22m1531105","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1595-1621, June 2024. <br/>Abstract. We investigate frugal splitting operators for finite sum monotone inclusion problems. These operators utilize exactly one direct or resolvent evaluation of each operator of the sum, and the splitting operator’s output is dictated by linear combinations of these evaluations’ inputs and outputs. To facilitate analysis, we introduce a novel representation of frugal splitting operators via a generalized primal-dual resolvent. The representation is characterized by an index and four matrices, and we provide conditions on these that ensure equivalence between the classes of frugal splitting operators and generalized primal-dual resolvents. Our representation paves the way for new results regarding lifting numbers and the development of a unified convergence analysis for frugal splitting operator methods, contingent on the directly evaluated operators being cocoercive. The minimal lifting number is [math] where [math] is the number of monotone operators and [math] is the number of direct evaluations in the splitting. Notably, this lifting number is achievable only if the first and last operator evaluations are resolvent evaluations. These results generalize the minimal lifting results by Ryu and by Malitsky and Tam that consider frugal resolvent splittings. Building on our representation, we delineate a constructive method to design frugal splitting operators, exemplified in the design of a novel, convergent, and parallelizable frugal splitting operator with minimal lifting.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frugal Splitting Operators: Representation, Minimal Lifting, and Convergence\",\"authors\":\"Martin Morin, Sebastian Banert, Pontus Giselsson\",\"doi\":\"10.1137/22m1531105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1595-1621, June 2024. <br/>Abstract. We investigate frugal splitting operators for finite sum monotone inclusion problems. These operators utilize exactly one direct or resolvent evaluation of each operator of the sum, and the splitting operator’s output is dictated by linear combinations of these evaluations’ inputs and outputs. To facilitate analysis, we introduce a novel representation of frugal splitting operators via a generalized primal-dual resolvent. The representation is characterized by an index and four matrices, and we provide conditions on these that ensure equivalence between the classes of frugal splitting operators and generalized primal-dual resolvents. Our representation paves the way for new results regarding lifting numbers and the development of a unified convergence analysis for frugal splitting operator methods, contingent on the directly evaluated operators being cocoercive. The minimal lifting number is [math] where [math] is the number of monotone operators and [math] is the number of direct evaluations in the splitting. Notably, this lifting number is achievable only if the first and last operator evaluations are resolvent evaluations. These results generalize the minimal lifting results by Ryu and by Malitsky and Tam that consider frugal resolvent splittings. Building on our representation, we delineate a constructive method to design frugal splitting operators, exemplified in the design of a novel, convergent, and parallelizable frugal splitting operator with minimal lifting.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1531105\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1531105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Frugal Splitting Operators: Representation, Minimal Lifting, and Convergence
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1595-1621, June 2024. Abstract. We investigate frugal splitting operators for finite sum monotone inclusion problems. These operators utilize exactly one direct or resolvent evaluation of each operator of the sum, and the splitting operator’s output is dictated by linear combinations of these evaluations’ inputs and outputs. To facilitate analysis, we introduce a novel representation of frugal splitting operators via a generalized primal-dual resolvent. The representation is characterized by an index and four matrices, and we provide conditions on these that ensure equivalence between the classes of frugal splitting operators and generalized primal-dual resolvents. Our representation paves the way for new results regarding lifting numbers and the development of a unified convergence analysis for frugal splitting operator methods, contingent on the directly evaluated operators being cocoercive. The minimal lifting number is [math] where [math] is the number of monotone operators and [math] is the number of direct evaluations in the splitting. Notably, this lifting number is achievable only if the first and last operator evaluations are resolvent evaluations. These results generalize the minimal lifting results by Ryu and by Malitsky and Tam that consider frugal resolvent splittings. Building on our representation, we delineate a constructive method to design frugal splitting operators, exemplified in the design of a novel, convergent, and parallelizable frugal splitting operator with minimal lifting.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.