研究预载对弹道记录仪减震系统振动特性的影响

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Wencan Jiang, Yonggang Lu, Jianyu Zhao
{"title":"研究预载对弹道记录仪减震系统振动特性的影响","authors":"Wencan Jiang, Yonggang Lu, Jianyu Zhao","doi":"10.1155/2024/5868224","DOIUrl":null,"url":null,"abstract":"In this study, the vibration characteristics of a bullet-loaded recorder’s vibration damping system under various preload conditions are investigated through theoretical analysis, numerical simulations, and experimental verification. The findings indicate that the inclusion of a polyurethane elastomer vibration damping buffer layer between the cartridge and the recorder, along with the application of a specific preload, significantly reduces the amplitude of vibration acceleration transmitted to the recorder’s interior. This, in turn, enhances the overload resistance of the cartridge’s internal circuit. Numerical simulation results and theoretical analysis suggest that increasing the preload on the buffer material between the elastomer and the recorder reduces both the frequency ratio and damping ratio of the damping system. This reduction further decreases the amplitude of vibration transmitted to the recorder. However, excessively high preload generates substantial compressive stress within the recorder under static conditions, intensifying during the projectile’s accelerated movement. As a consequence, deformation and damage occur to the internal circuitry. Therefore, ensuring that the recorder possesses the structural strength necessary to withstand increased preload is crucial. This balancing act improves the recorder’s resistance to shock, vibration, and overload, while also preventing excessive stress-induced damage.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"159 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Researching the Influence of Preload on Vibration Characteristics in the Ballistic Recorder Vibration Damping System\",\"authors\":\"Wencan Jiang, Yonggang Lu, Jianyu Zhao\",\"doi\":\"10.1155/2024/5868224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the vibration characteristics of a bullet-loaded recorder’s vibration damping system under various preload conditions are investigated through theoretical analysis, numerical simulations, and experimental verification. The findings indicate that the inclusion of a polyurethane elastomer vibration damping buffer layer between the cartridge and the recorder, along with the application of a specific preload, significantly reduces the amplitude of vibration acceleration transmitted to the recorder’s interior. This, in turn, enhances the overload resistance of the cartridge’s internal circuit. Numerical simulation results and theoretical analysis suggest that increasing the preload on the buffer material between the elastomer and the recorder reduces both the frequency ratio and damping ratio of the damping system. This reduction further decreases the amplitude of vibration transmitted to the recorder. However, excessively high preload generates substantial compressive stress within the recorder under static conditions, intensifying during the projectile’s accelerated movement. As a consequence, deformation and damage occur to the internal circuitry. Therefore, ensuring that the recorder possesses the structural strength necessary to withstand increased preload is crucial. This balancing act improves the recorder’s resistance to shock, vibration, and overload, while also preventing excessive stress-induced damage.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5868224\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5868224","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,通过理论分析、数值模拟和实验验证,研究了子弹装载木笛减震系统在不同预载条件下的振动特性。研究结果表明,在子弹盒和记录盒之间加入聚氨酯弹性体减振缓冲层,并施加特定的预紧力,可显著降低传递到记录盒内部的振动加速度的振幅。这反过来又增强了盒式磁带内部电路的抗过载能力。数值模拟结果和理论分析表明,增加弹性体和木笛之间缓冲材料的预紧力会降低阻尼系统的频率比和阻尼比。这种降低进一步减小了传递到记录盒的振动幅度。然而,在静态条件下,过高的预紧力会在记录盒内产生巨大的压缩应力,并在弹丸加速运动时加剧。因此,内部电路会发生变形和损坏。因此,确保记录盒具有承受预紧力增加所需的结构强度至关重要。这种平衡行为既能提高记录盒的抗冲击、抗振动和抗过载能力,又能防止过度应力引起的损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Researching the Influence of Preload on Vibration Characteristics in the Ballistic Recorder Vibration Damping System
In this study, the vibration characteristics of a bullet-loaded recorder’s vibration damping system under various preload conditions are investigated through theoretical analysis, numerical simulations, and experimental verification. The findings indicate that the inclusion of a polyurethane elastomer vibration damping buffer layer between the cartridge and the recorder, along with the application of a specific preload, significantly reduces the amplitude of vibration acceleration transmitted to the recorder’s interior. This, in turn, enhances the overload resistance of the cartridge’s internal circuit. Numerical simulation results and theoretical analysis suggest that increasing the preload on the buffer material between the elastomer and the recorder reduces both the frequency ratio and damping ratio of the damping system. This reduction further decreases the amplitude of vibration transmitted to the recorder. However, excessively high preload generates substantial compressive stress within the recorder under static conditions, intensifying during the projectile’s accelerated movement. As a consequence, deformation and damage occur to the internal circuitry. Therefore, ensuring that the recorder possesses the structural strength necessary to withstand increased preload is crucial. This balancing act improves the recorder’s resistance to shock, vibration, and overload, while also preventing excessive stress-induced damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信