{"title":"来自完全相对论格子 QCD 的 $\\bar{b}c$ 易感性","authors":"Judd Harrison","doi":"arxiv-2405.01390","DOIUrl":null,"url":null,"abstract":"We compute the $\\bar{h}c$ (pseudo)scalar, (axial-)vector and (axial-)tensor\nsusceptibilities as a function of $u=m_c/m_h$ between $u=m_c/m_b$ and $u=0.8$\nusing fully relativistic lattice QCD, employing nonperturbative current\nrenormalisation and using the second generation 2+1+1 MILC HISQ gluon field\nconfigurations. We include ensembles with $a\\approx 0.09\\mathrm{fm}$,\n$0.06\\mathrm{fm}$, $0.045\\mathrm{fm}$ and $0.033\\mathrm{fm}$ and we are able to\nreach the physical $b$-quark on the two finest ensembles. At the physical\n$m_h=m_b$ point we find $\\overline{m}_b^2 \\chi_{1^+}={0.720(34)\\times\n10^{-2}}$, $\\overline{m}_b^2 \\chi_{1^-}={1.161(54)\\times 10^{-2}}$,\n$\\chi_{0^-}={2.374(33)\\times 10^{-2}}$, $\\chi_{0^+}={0.609(14)\\times 10^{-2}}$.\nOur results for the (pseudo)scalar, vector and axial-vector are compatible with\nthe expected small size of nonperturbative effects at $u=m_c/m_b$. We also give\nthe first nonperturbative determination of the tensor susceptibilities, finding\n$\\overline{m}_b^2 \\chi_{T}={0.891(44)\\times 10^{-2}}$ and $\\overline{m}_b^2\n\\chi_{AT}={0.441(33)\\times 10^{-2}}$. Our value of $\\overline{m}_b^2\\chi_{AT}$\nis in good agreement with the $\\mathcal{O}(\\alpha_s)$ perturbation theory,\nwhile our result for $\\overline{m}_b^2\\chi_{T}$ is in tension with the\n$\\mathcal{O}(\\alpha_s)$ perturbation theory at the level of $2\\sigma$. These\nresults will allow for dispersively bounded parameterisations to be employed\nusing lattice inputs for the full set of $h\\to c$ semileptonic form factors in\nfuture calculations, for heavy-quark masses in the range $1.25\\times m_c \\leq\nm_h \\leq m_b$.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\bar{b}c$ susceptibilities from fully relativistic lattice QCD\",\"authors\":\"Judd Harrison\",\"doi\":\"arxiv-2405.01390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the $\\\\bar{h}c$ (pseudo)scalar, (axial-)vector and (axial-)tensor\\nsusceptibilities as a function of $u=m_c/m_h$ between $u=m_c/m_b$ and $u=0.8$\\nusing fully relativistic lattice QCD, employing nonperturbative current\\nrenormalisation and using the second generation 2+1+1 MILC HISQ gluon field\\nconfigurations. We include ensembles with $a\\\\approx 0.09\\\\mathrm{fm}$,\\n$0.06\\\\mathrm{fm}$, $0.045\\\\mathrm{fm}$ and $0.033\\\\mathrm{fm}$ and we are able to\\nreach the physical $b$-quark on the two finest ensembles. At the physical\\n$m_h=m_b$ point we find $\\\\overline{m}_b^2 \\\\chi_{1^+}={0.720(34)\\\\times\\n10^{-2}}$, $\\\\overline{m}_b^2 \\\\chi_{1^-}={1.161(54)\\\\times 10^{-2}}$,\\n$\\\\chi_{0^-}={2.374(33)\\\\times 10^{-2}}$, $\\\\chi_{0^+}={0.609(14)\\\\times 10^{-2}}$.\\nOur results for the (pseudo)scalar, vector and axial-vector are compatible with\\nthe expected small size of nonperturbative effects at $u=m_c/m_b$. We also give\\nthe first nonperturbative determination of the tensor susceptibilities, finding\\n$\\\\overline{m}_b^2 \\\\chi_{T}={0.891(44)\\\\times 10^{-2}}$ and $\\\\overline{m}_b^2\\n\\\\chi_{AT}={0.441(33)\\\\times 10^{-2}}$. Our value of $\\\\overline{m}_b^2\\\\chi_{AT}$\\nis in good agreement with the $\\\\mathcal{O}(\\\\alpha_s)$ perturbation theory,\\nwhile our result for $\\\\overline{m}_b^2\\\\chi_{T}$ is in tension with the\\n$\\\\mathcal{O}(\\\\alpha_s)$ perturbation theory at the level of $2\\\\sigma$. These\\nresults will allow for dispersively bounded parameterisations to be employed\\nusing lattice inputs for the full set of $h\\\\to c$ semileptonic form factors in\\nfuture calculations, for heavy-quark masses in the range $1.25\\\\times m_c \\\\leq\\nm_h \\\\leq m_b$.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
$\bar{b}c$ susceptibilities from fully relativistic lattice QCD
We compute the $\bar{h}c$ (pseudo)scalar, (axial-)vector and (axial-)tensor
susceptibilities as a function of $u=m_c/m_h$ between $u=m_c/m_b$ and $u=0.8$
using fully relativistic lattice QCD, employing nonperturbative current
renormalisation and using the second generation 2+1+1 MILC HISQ gluon field
configurations. We include ensembles with $a\approx 0.09\mathrm{fm}$,
$0.06\mathrm{fm}$, $0.045\mathrm{fm}$ and $0.033\mathrm{fm}$ and we are able to
reach the physical $b$-quark on the two finest ensembles. At the physical
$m_h=m_b$ point we find $\overline{m}_b^2 \chi_{1^+}={0.720(34)\times
10^{-2}}$, $\overline{m}_b^2 \chi_{1^-}={1.161(54)\times 10^{-2}}$,
$\chi_{0^-}={2.374(33)\times 10^{-2}}$, $\chi_{0^+}={0.609(14)\times 10^{-2}}$.
Our results for the (pseudo)scalar, vector and axial-vector are compatible with
the expected small size of nonperturbative effects at $u=m_c/m_b$. We also give
the first nonperturbative determination of the tensor susceptibilities, finding
$\overline{m}_b^2 \chi_{T}={0.891(44)\times 10^{-2}}$ and $\overline{m}_b^2
\chi_{AT}={0.441(33)\times 10^{-2}}$. Our value of $\overline{m}_b^2\chi_{AT}$
is in good agreement with the $\mathcal{O}(\alpha_s)$ perturbation theory,
while our result for $\overline{m}_b^2\chi_{T}$ is in tension with the
$\mathcal{O}(\alpha_s)$ perturbation theory at the level of $2\sigma$. These
results will allow for dispersively bounded parameterisations to be employed
using lattice inputs for the full set of $h\to c$ semileptonic form factors in
future calculations, for heavy-quark masses in the range $1.25\times m_c \leq
m_h \leq m_b$.