{"title":"温度衍生品估值的随机波动模型","authors":"Aurélien Alfonsi, Nerea Vadillo","doi":"10.1093/imaman/dpae013","DOIUrl":null,"url":null,"abstract":"This paper develops a new stochastic volatility model for the average daily temperature. It is a natural extension of a Gaussian model in which the temperature returns to a seasonal trend with a deterministic time-dependent volatility. The new model allows to be more conservative regarding extreme events while keeping tractability. We give a method based on Conditional Least Squares to estimate the parameters on daily data and estimate our model on eight major European cities. We then show how to calculate efficiently the average payoff of weather derivatives both by Monte-Carlo and Fourier transform techniques. This new model allows to better assess the risk related to temperature volatility.","PeriodicalId":56296,"journal":{"name":"IMA Journal of Management Mathematics","volume":"171 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic volatility model for the valuation of temperature derivatives\",\"authors\":\"Aurélien Alfonsi, Nerea Vadillo\",\"doi\":\"10.1093/imaman/dpae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a new stochastic volatility model for the average daily temperature. It is a natural extension of a Gaussian model in which the temperature returns to a seasonal trend with a deterministic time-dependent volatility. The new model allows to be more conservative regarding extreme events while keeping tractability. We give a method based on Conditional Least Squares to estimate the parameters on daily data and estimate our model on eight major European cities. We then show how to calculate efficiently the average payoff of weather derivatives both by Monte-Carlo and Fourier transform techniques. This new model allows to better assess the risk related to temperature volatility.\",\"PeriodicalId\":56296,\"journal\":{\"name\":\"IMA Journal of Management Mathematics\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Management Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/imaman/dpae013\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Management Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/imaman/dpae013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
A stochastic volatility model for the valuation of temperature derivatives
This paper develops a new stochastic volatility model for the average daily temperature. It is a natural extension of a Gaussian model in which the temperature returns to a seasonal trend with a deterministic time-dependent volatility. The new model allows to be more conservative regarding extreme events while keeping tractability. We give a method based on Conditional Least Squares to estimate the parameters on daily data and estimate our model on eight major European cities. We then show how to calculate efficiently the average payoff of weather derivatives both by Monte-Carlo and Fourier transform techniques. This new model allows to better assess the risk related to temperature volatility.
期刊介绍:
The mission of this quarterly journal is to publish mathematical research of the highest quality, impact and relevance that can be directly utilised or have demonstrable potential to be employed by managers in profit, not-for-profit, third party and governmental/public organisations to improve their practices. Thus the research must be quantitative and of the highest quality if it is to be published in the journal. Furthermore, the outcome of the research must be ultimately useful for managers. The journal also publishes novel meta-analyses of the literature, reviews of the "state-of-the art" in a manner that provides new insight, and genuine applications of mathematics to real-world problems in the form of case studies. The journal welcomes papers dealing with topics in Operational Research and Management Science, Operations Management, Decision Sciences, Transportation Science, Marketing Science, Analytics, and Financial and Risk Modelling.