{"title":"西印度洋底层水温度校准--底栖有孔虫的镁/钙比值是可靠的古温度测定代用指标吗?","authors":"Viktoria Larsson, Simon Jung","doi":"10.5194/egusphere-2024-979","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Mg/Ca ratios measured in benthic foraminifera have been explored as a potential palaeothermometry proxy for bottom water temperatures (BWT). Mg/Ca-BWT calibrations from the Indian Ocean are rare and comprise conflicting results. Inconsistencies between studies suggest that calibrations may need to be region specific. The aim of this study was to develop benthic foraminifera (<em>Uvigerina peregrina</em>, <em>Cibicidoides wuellerstorfi</em> and <em>Cibicidoides mundulus</em>) based Mg/Ca – BWT calibrations in the tropical western Indian Ocean. Testing variations of existing analytical protocols, aimed at optimising cleaning of the foraminifera while avoiding sample loss in the process, entailed that a previously established protocol by Barker et al. (2003) was the most suitable for our study. The majority of samples of <em>Cibicidoides mundulus</em> and <em>Uvigerina peregrina</em>, however, remained contaminated, rendering those data unusable for Mg/Ca core-top calibrations. Only Mg/Ca ratios in <em>Cibicidoides wuellerstorfi</em> allowed a tentative Mg/Ca - BWT calibration with the relationship being: Mg/Ca = 0.19 ± 0.02 ∗ BWT + 1.07 ± 0.03, 𝑟<sup>2</sup> = 0.87. While this result differs to some degree from previous studies it principally suggests that existing core-top calibrations from the wider Indian Ocean can be applied to core-tops in the western Indian Ocean. The agreement of Mg/Ca ratios at lower temperatures in <em>Cibicidoides wuellerstorfi</em>, <em>Cibicidoides mundulus</em> and <em>Uvigerina peregrina</em> with Mg/Ca ratios reported for these species at low temperatures in other studies supports this conclusion. Many uncertainties surrounding the Mg/Ca proxy exist and more calibration studies are required to improve this method.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"31 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Western Indian Ocean bottom water temperature calibration – are benthic foraminiferal Mg/Ca ratios a reliable palaeothermometry proxy?\",\"authors\":\"Viktoria Larsson, Simon Jung\",\"doi\":\"10.5194/egusphere-2024-979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Mg/Ca ratios measured in benthic foraminifera have been explored as a potential palaeothermometry proxy for bottom water temperatures (BWT). Mg/Ca-BWT calibrations from the Indian Ocean are rare and comprise conflicting results. Inconsistencies between studies suggest that calibrations may need to be region specific. The aim of this study was to develop benthic foraminifera (<em>Uvigerina peregrina</em>, <em>Cibicidoides wuellerstorfi</em> and <em>Cibicidoides mundulus</em>) based Mg/Ca – BWT calibrations in the tropical western Indian Ocean. Testing variations of existing analytical protocols, aimed at optimising cleaning of the foraminifera while avoiding sample loss in the process, entailed that a previously established protocol by Barker et al. (2003) was the most suitable for our study. The majority of samples of <em>Cibicidoides mundulus</em> and <em>Uvigerina peregrina</em>, however, remained contaminated, rendering those data unusable for Mg/Ca core-top calibrations. Only Mg/Ca ratios in <em>Cibicidoides wuellerstorfi</em> allowed a tentative Mg/Ca - BWT calibration with the relationship being: Mg/Ca = 0.19 ± 0.02 ∗ BWT + 1.07 ± 0.03, 𝑟<sup>2</sup> = 0.87. While this result differs to some degree from previous studies it principally suggests that existing core-top calibrations from the wider Indian Ocean can be applied to core-tops in the western Indian Ocean. The agreement of Mg/Ca ratios at lower temperatures in <em>Cibicidoides wuellerstorfi</em>, <em>Cibicidoides mundulus</em> and <em>Uvigerina peregrina</em> with Mg/Ca ratios reported for these species at low temperatures in other studies supports this conclusion. Many uncertainties surrounding the Mg/Ca proxy exist and more calibration studies are required to improve this method.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-979\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-979","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Western Indian Ocean bottom water temperature calibration – are benthic foraminiferal Mg/Ca ratios a reliable palaeothermometry proxy?
Abstract. Mg/Ca ratios measured in benthic foraminifera have been explored as a potential palaeothermometry proxy for bottom water temperatures (BWT). Mg/Ca-BWT calibrations from the Indian Ocean are rare and comprise conflicting results. Inconsistencies between studies suggest that calibrations may need to be region specific. The aim of this study was to develop benthic foraminifera (Uvigerina peregrina, Cibicidoides wuellerstorfi and Cibicidoides mundulus) based Mg/Ca – BWT calibrations in the tropical western Indian Ocean. Testing variations of existing analytical protocols, aimed at optimising cleaning of the foraminifera while avoiding sample loss in the process, entailed that a previously established protocol by Barker et al. (2003) was the most suitable for our study. The majority of samples of Cibicidoides mundulus and Uvigerina peregrina, however, remained contaminated, rendering those data unusable for Mg/Ca core-top calibrations. Only Mg/Ca ratios in Cibicidoides wuellerstorfi allowed a tentative Mg/Ca - BWT calibration with the relationship being: Mg/Ca = 0.19 ± 0.02 ∗ BWT + 1.07 ± 0.03, 𝑟2 = 0.87. While this result differs to some degree from previous studies it principally suggests that existing core-top calibrations from the wider Indian Ocean can be applied to core-tops in the western Indian Ocean. The agreement of Mg/Ca ratios at lower temperatures in Cibicidoides wuellerstorfi, Cibicidoides mundulus and Uvigerina peregrina with Mg/Ca ratios reported for these species at low temperatures in other studies supports this conclusion. Many uncertainties surrounding the Mg/Ca proxy exist and more calibration studies are required to improve this method.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.