具有不可限时系数的完全退化二阶演化方程的加权 $$L_q(L_p)$$ 理论

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Ildoo Kim
{"title":"具有不可限时系数的完全退化二阶演化方程的加权 $$L_q(L_p)$$ 理论","authors":"Ildoo Kim","doi":"10.1007/s40072-024-00330-3","DOIUrl":null,"url":null,"abstract":"<p>We study the fully degenerate second-order evolution equation </p><span>$$\\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j} +b^i(t) u_{x^i} + c(t)u+f, \\quad t&gt;0, x\\in \\mathbb {R}^d \\end{aligned}$$</span>(0.1)<p>given with the zero initial data. Here <span>\\(a^{ij}(t)\\)</span>, <span>\\(b^i(t)\\)</span>, <i>c</i>(<i>t</i>) are merely locally integrable functions, and <span>\\((a^{ij}(t))_{d \\times d}\\)</span> is a nonnegative symmetric matrix with the smallest eigenvalue <span>\\(\\delta (t)\\ge 0\\)</span>. We show that there is a positive constant <i>N</i> such that </p><span>$$\\begin{aligned}&amp;\\int _0^{T} \\left( \\int _{\\mathbb {R}^d} \\left( |u(t,x)|+|u_{xx}(t,x) |\\right) ^{p} dx \\right) ^{q/p} e^{-q\\int _0^t c(s)ds} w(\\alpha (t)) \\delta (t) dt \\nonumber \\\\&amp;\\le N \\int _0^{T} \\left( \\int _{\\mathbb {R}^d} \\left| f\\left( t,x\\right) \\right| ^{p} dx \\right) ^{q/p} e^{-q\\int _0^t c(s)ds} w(\\alpha (t)) (\\delta (t))^{1-q} dt, \\end{aligned}$$</span>(0.2)<p>where <span>\\(p,q \\in (1,\\infty )\\)</span>, <span>\\(\\alpha (t)=\\int _0^t \\delta (s)ds\\)</span>, and <i>w</i> is Muckenhoupt’s weight.</p>","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weighted $$L_q(L_p)$$ -theory for fully degenerate second-order evolution equations with unbounded time-measurable coefficients\",\"authors\":\"Ildoo Kim\",\"doi\":\"10.1007/s40072-024-00330-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the fully degenerate second-order evolution equation </p><span>$$\\\\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j} +b^i(t) u_{x^i} + c(t)u+f, \\\\quad t&gt;0, x\\\\in \\\\mathbb {R}^d \\\\end{aligned}$$</span>(0.1)<p>given with the zero initial data. Here <span>\\\\(a^{ij}(t)\\\\)</span>, <span>\\\\(b^i(t)\\\\)</span>, <i>c</i>(<i>t</i>) are merely locally integrable functions, and <span>\\\\((a^{ij}(t))_{d \\\\times d}\\\\)</span> is a nonnegative symmetric matrix with the smallest eigenvalue <span>\\\\(\\\\delta (t)\\\\ge 0\\\\)</span>. We show that there is a positive constant <i>N</i> such that </p><span>$$\\\\begin{aligned}&amp;\\\\int _0^{T} \\\\left( \\\\int _{\\\\mathbb {R}^d} \\\\left( |u(t,x)|+|u_{xx}(t,x) |\\\\right) ^{p} dx \\\\right) ^{q/p} e^{-q\\\\int _0^t c(s)ds} w(\\\\alpha (t)) \\\\delta (t) dt \\\\nonumber \\\\\\\\&amp;\\\\le N \\\\int _0^{T} \\\\left( \\\\int _{\\\\mathbb {R}^d} \\\\left| f\\\\left( t,x\\\\right) \\\\right| ^{p} dx \\\\right) ^{q/p} e^{-q\\\\int _0^t c(s)ds} w(\\\\alpha (t)) (\\\\delta (t))^{1-q} dt, \\\\end{aligned}$$</span>(0.2)<p>where <span>\\\\(p,q \\\\in (1,\\\\infty )\\\\)</span>, <span>\\\\(\\\\alpha (t)=\\\\int _0^t \\\\delta (s)ds\\\\)</span>, and <i>w</i> is Muckenhoupt’s weight.</p>\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-024-00330-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40072-024-00330-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是完全退化的二阶演化方程 $$\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j}+b^i(t) u_{x^i}+ c(t)u+f, \quad t>0, x\in \mathbb {R}^d \end{aligned}$$(0.1)given with the zero initial data.这里\(a^{ij}(t)\)、\(b^i(t)\)、c(t)仅仅是局部可积分函数,而\((a^{ij}(t))_{d \times d}\)是一个非负对称矩阵,其最小特征值是\(\delta (t)\ge 0\)。我们证明存在一个正常数 N,使得 $$\begin{aligned}&\int _0^{T}\left( \int _{\mathbb {R}^d}|u(t,x)|+|u_{xx}(t,x) |\right) ^{p} dx \right) ^{q/p} e^{-qint _0^t c(s)ds} w(\alpha (t))\nonumber \&\le N \int _0^{T}\int _{\mathbb {R}^d}\f\left( t,x\right) \right| ^{p} dx \right) ^{q/p} e^{-q\int _0^t c(s)ds} w(\alpha (t)) (\delta (t))^{1-q} dt, \end{aligned}$(0.2)where \(p,q \in (1,\infty )\), \(\alpha (t)=\int _0^t \delta (s)ds\), and w is Muckenhoupt's weight.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weighted $$L_q(L_p)$$ -theory for fully degenerate second-order evolution equations with unbounded time-measurable coefficients

We study the fully degenerate second-order evolution equation

$$\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j} +b^i(t) u_{x^i} + c(t)u+f, \quad t>0, x\in \mathbb {R}^d \end{aligned}$$(0.1)

given with the zero initial data. Here \(a^{ij}(t)\), \(b^i(t)\), c(t) are merely locally integrable functions, and \((a^{ij}(t))_{d \times d}\) is a nonnegative symmetric matrix with the smallest eigenvalue \(\delta (t)\ge 0\). We show that there is a positive constant N such that

$$\begin{aligned}&\int _0^{T} \left( \int _{\mathbb {R}^d} \left( |u(t,x)|+|u_{xx}(t,x) |\right) ^{p} dx \right) ^{q/p} e^{-q\int _0^t c(s)ds} w(\alpha (t)) \delta (t) dt \nonumber \\&\le N \int _0^{T} \left( \int _{\mathbb {R}^d} \left| f\left( t,x\right) \right| ^{p} dx \right) ^{q/p} e^{-q\int _0^t c(s)ds} w(\alpha (t)) (\delta (t))^{1-q} dt, \end{aligned}$$(0.2)

where \(p,q \in (1,\infty )\), \(\alpha (t)=\int _0^t \delta (s)ds\), and w is Muckenhoupt’s weight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
13.30%
发文量
54
期刊介绍: Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信