求助PDF
{"title":"具有不可限时系数的完全退化二阶演化方程的加权 $$L_q(L_p)$$ 理论","authors":"Ildoo Kim","doi":"10.1007/s40072-024-00330-3","DOIUrl":null,"url":null,"abstract":"<p>We study the fully degenerate second-order evolution equation </p><span>$$\\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j} +b^i(t) u_{x^i} + c(t)u+f, \\quad t>0, x\\in \\mathbb {R}^d \\end{aligned}$$</span>(0.1)<p>given with the zero initial data. Here <span>\\(a^{ij}(t)\\)</span>, <span>\\(b^i(t)\\)</span>, <i>c</i>(<i>t</i>) are merely locally integrable functions, and <span>\\((a^{ij}(t))_{d \\times d}\\)</span> is a nonnegative symmetric matrix with the smallest eigenvalue <span>\\(\\delta (t)\\ge 0\\)</span>. We show that there is a positive constant <i>N</i> such that </p><span>$$\\begin{aligned}&\\int _0^{T} \\left( \\int _{\\mathbb {R}^d} \\left( |u(t,x)|+|u_{xx}(t,x) |\\right) ^{p} dx \\right) ^{q/p} e^{-q\\int _0^t c(s)ds} w(\\alpha (t)) \\delta (t) dt \\nonumber \\\\&\\le N \\int _0^{T} \\left( \\int _{\\mathbb {R}^d} \\left| f\\left( t,x\\right) \\right| ^{p} dx \\right) ^{q/p} e^{-q\\int _0^t c(s)ds} w(\\alpha (t)) (\\delta (t))^{1-q} dt, \\end{aligned}$$</span>(0.2)<p>where <span>\\(p,q \\in (1,\\infty )\\)</span>, <span>\\(\\alpha (t)=\\int _0^t \\delta (s)ds\\)</span>, and <i>w</i> is Muckenhoupt’s weight.</p>","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weighted $$L_q(L_p)$$ -theory for fully degenerate second-order evolution equations with unbounded time-measurable coefficients\",\"authors\":\"Ildoo Kim\",\"doi\":\"10.1007/s40072-024-00330-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the fully degenerate second-order evolution equation </p><span>$$\\\\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j} +b^i(t) u_{x^i} + c(t)u+f, \\\\quad t>0, x\\\\in \\\\mathbb {R}^d \\\\end{aligned}$$</span>(0.1)<p>given with the zero initial data. Here <span>\\\\(a^{ij}(t)\\\\)</span>, <span>\\\\(b^i(t)\\\\)</span>, <i>c</i>(<i>t</i>) are merely locally integrable functions, and <span>\\\\((a^{ij}(t))_{d \\\\times d}\\\\)</span> is a nonnegative symmetric matrix with the smallest eigenvalue <span>\\\\(\\\\delta (t)\\\\ge 0\\\\)</span>. We show that there is a positive constant <i>N</i> such that </p><span>$$\\\\begin{aligned}&\\\\int _0^{T} \\\\left( \\\\int _{\\\\mathbb {R}^d} \\\\left( |u(t,x)|+|u_{xx}(t,x) |\\\\right) ^{p} dx \\\\right) ^{q/p} e^{-q\\\\int _0^t c(s)ds} w(\\\\alpha (t)) \\\\delta (t) dt \\\\nonumber \\\\\\\\&\\\\le N \\\\int _0^{T} \\\\left( \\\\int _{\\\\mathbb {R}^d} \\\\left| f\\\\left( t,x\\\\right) \\\\right| ^{p} dx \\\\right) ^{q/p} e^{-q\\\\int _0^t c(s)ds} w(\\\\alpha (t)) (\\\\delta (t))^{1-q} dt, \\\\end{aligned}$$</span>(0.2)<p>where <span>\\\\(p,q \\\\in (1,\\\\infty )\\\\)</span>, <span>\\\\(\\\\alpha (t)=\\\\int _0^t \\\\delta (s)ds\\\\)</span>, and <i>w</i> is Muckenhoupt’s weight.</p>\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-024-00330-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40072-024-00330-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
我们研究的是完全退化的二阶演化方程 $$\begin{aligned} u_t=a^{ij}(t)u_{x^ix^j}+b^i(t) u_{x^i}+ c(t)u+f, \quad t>0, x\in \mathbb {R}^d \end{aligned}$$(0.1)given with the zero initial data.这里\(a^{ij}(t)\)、\(b^i(t)\)、c(t)仅仅是局部可积分函数,而\((a^{ij}(t))_{d \times d}\)是一个非负对称矩阵,其最小特征值是\(\delta (t)\ge 0\)。我们证明存在一个正常数 N,使得 $$\begin{aligned}&\int _0^{T}\left( \int _{\mathbb {R}^d}|u(t,x)|+|u_{xx}(t,x) |\right) ^{p} dx \right) ^{q/p} e^{-qint _0^t c(s)ds} w(\alpha (t))\nonumber \&\le N \int _0^{T}\int _{\mathbb {R}^d}\f\left( t,x\right) \right| ^{p} dx \right) ^{q/p} e^{-q\int _0^t c(s)ds} w(\alpha (t)) (\delta (t))^{1-q} dt, \end{aligned}$(0.2)where \(p,q \in (1,\infty )\), \(\alpha (t)=\int _0^t \delta (s)ds\), and w is Muckenhoupt's weight.
本文章由计算机程序翻译,如有差异,请以英文原文为准。