{"title":"LITE-SNN:利用固有动态性训练高能效尖峰神经网络以进行序列学习","authors":"Nitin Rathi;Kaushik Roy","doi":"10.1109/TCDS.2024.3396431","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are gaining popularity for their promise of low-power machine intelligence on event-driven neuromorphic hardware. SNNs have achieved comparable performance as artificial neural networks (ANNs) on static tasks (image classification) with lower compute energy. In this work, we explore the inherent dynamics of SNNs for sequential tasks such as gesture recognition, sentiment analysis, and sequence-to-sequence learning on data from dynamic vision sensors (DVSs) and natural language processing (NLP). Sequential data are generally processed with complex recurrent neural networks (RNNs) [long short-term memory/gated recurrent unit (LSTM/GRU)] with explicit feedback connections and internal states to handle the long-term dependencies. The neuron models in SNNs—integrate-and-fire (IF) or leaky-integrate-and-fire (LIF)—have internal states (membrane potential) that can be efficiently leveraged for sequential tasks. The membrane potential in the IF/LIF neuron integrates the incoming current and outputs an event (or spike) when the potential crosses a threshold value. Since SNNs compute with highly sparse spike-based spatiotemporal data, the energy/inference is lower than LSTMs/GRUs. We also show that SNNs require fewer parameters than LSTM/GRU resulting in smaller models and faster inference. We observe the problem of vanishing gradients in vanilla SNNs for longer sequences and implement a convolutional SNN with attention layers to perform sequence-to-sequence learning tasks. The inherent recurrence in SNNs, in addition to the fully parallelized convolutional operations, provide additional mechanisms to model sequential dependencies that lead to better accuracy than convolutional neural networks (CNNs) with ReLU activations. We evaluate SNN on gesture recognition from the IBM DVS dataset, sentiment analysis from the IMDB movie reviews dataset, and German-to-English translation from the Multi30k dataset.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"1905-1914"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LITE-SNN: Leveraging Inherent Dynamics to Train Energy-Efficient Spiking Neural Networks for Sequential Learning\",\"authors\":\"Nitin Rathi;Kaushik Roy\",\"doi\":\"10.1109/TCDS.2024.3396431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) are gaining popularity for their promise of low-power machine intelligence on event-driven neuromorphic hardware. SNNs have achieved comparable performance as artificial neural networks (ANNs) on static tasks (image classification) with lower compute energy. In this work, we explore the inherent dynamics of SNNs for sequential tasks such as gesture recognition, sentiment analysis, and sequence-to-sequence learning on data from dynamic vision sensors (DVSs) and natural language processing (NLP). Sequential data are generally processed with complex recurrent neural networks (RNNs) [long short-term memory/gated recurrent unit (LSTM/GRU)] with explicit feedback connections and internal states to handle the long-term dependencies. The neuron models in SNNs—integrate-and-fire (IF) or leaky-integrate-and-fire (LIF)—have internal states (membrane potential) that can be efficiently leveraged for sequential tasks. The membrane potential in the IF/LIF neuron integrates the incoming current and outputs an event (or spike) when the potential crosses a threshold value. Since SNNs compute with highly sparse spike-based spatiotemporal data, the energy/inference is lower than LSTMs/GRUs. We also show that SNNs require fewer parameters than LSTM/GRU resulting in smaller models and faster inference. We observe the problem of vanishing gradients in vanilla SNNs for longer sequences and implement a convolutional SNN with attention layers to perform sequence-to-sequence learning tasks. The inherent recurrence in SNNs, in addition to the fully parallelized convolutional operations, provide additional mechanisms to model sequential dependencies that lead to better accuracy than convolutional neural networks (CNNs) with ReLU activations. We evaluate SNN on gesture recognition from the IBM DVS dataset, sentiment analysis from the IMDB movie reviews dataset, and German-to-English translation from the Multi30k dataset.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"16 6\",\"pages\":\"1905-1914\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10518157/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10518157/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LITE-SNN: Leveraging Inherent Dynamics to Train Energy-Efficient Spiking Neural Networks for Sequential Learning
Spiking neural networks (SNNs) are gaining popularity for their promise of low-power machine intelligence on event-driven neuromorphic hardware. SNNs have achieved comparable performance as artificial neural networks (ANNs) on static tasks (image classification) with lower compute energy. In this work, we explore the inherent dynamics of SNNs for sequential tasks such as gesture recognition, sentiment analysis, and sequence-to-sequence learning on data from dynamic vision sensors (DVSs) and natural language processing (NLP). Sequential data are generally processed with complex recurrent neural networks (RNNs) [long short-term memory/gated recurrent unit (LSTM/GRU)] with explicit feedback connections and internal states to handle the long-term dependencies. The neuron models in SNNs—integrate-and-fire (IF) or leaky-integrate-and-fire (LIF)—have internal states (membrane potential) that can be efficiently leveraged for sequential tasks. The membrane potential in the IF/LIF neuron integrates the incoming current and outputs an event (or spike) when the potential crosses a threshold value. Since SNNs compute with highly sparse spike-based spatiotemporal data, the energy/inference is lower than LSTMs/GRUs. We also show that SNNs require fewer parameters than LSTM/GRU resulting in smaller models and faster inference. We observe the problem of vanishing gradients in vanilla SNNs for longer sequences and implement a convolutional SNN with attention layers to perform sequence-to-sequence learning tasks. The inherent recurrence in SNNs, in addition to the fully parallelized convolutional operations, provide additional mechanisms to model sequential dependencies that lead to better accuracy than convolutional neural networks (CNNs) with ReLU activations. We evaluate SNN on gesture recognition from the IBM DVS dataset, sentiment analysis from the IMDB movie reviews dataset, and German-to-English translation from the Multi30k dataset.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.