具有单项权重的各向异性函数最小化的局部有界性

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro
{"title":"具有单项权重的各向异性函数最小化的局部有界性","authors":"Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro","doi":"10.1007/s10957-024-02432-3","DOIUrl":null,"url":null,"abstract":"<p>We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic <span>\\(p,q-\\)</span> growth condition. More precisely, the growth condition of the integrand function <span>\\(f(x,\\nabla u)\\)</span> from below involves different <span>\\(p_i&gt;1\\)</span> powers of the partial derivatives of <i>u</i> and some monomial weights <span>\\(|x_i|^{\\alpha _i p_i}\\)</span> with <span>\\(\\alpha _i \\in [0,1)\\)</span> that may degenerate to zero. Otherwise from above it is controlled by a <i>q</i> power of the modulus of the gradient of <i>u</i> with <span>\\(q\\ge \\max _i p_i\\)</span> and an unbounded weight <span>\\(\\mu (x)\\)</span>. The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights <span>\\(|x_i|^{\\alpha _i p_i}\\)</span>.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights\",\"authors\":\"Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro\",\"doi\":\"10.1007/s10957-024-02432-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic <span>\\\\(p,q-\\\\)</span> growth condition. More precisely, the growth condition of the integrand function <span>\\\\(f(x,\\\\nabla u)\\\\)</span> from below involves different <span>\\\\(p_i&gt;1\\\\)</span> powers of the partial derivatives of <i>u</i> and some monomial weights <span>\\\\(|x_i|^{\\\\alpha _i p_i}\\\\)</span> with <span>\\\\(\\\\alpha _i \\\\in [0,1)\\\\)</span> that may degenerate to zero. Otherwise from above it is controlled by a <i>q</i> power of the modulus of the gradient of <i>u</i> with <span>\\\\(q\\\\ge \\\\max _i p_i\\\\)</span> and an unbounded weight <span>\\\\(\\\\mu (x)\\\\)</span>. The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights <span>\\\\(|x_i|^{\\\\alpha _i p_i}\\\\)</span>.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02432-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02432-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有合适的各向异性 \(p,q-\)增长条件的非均匀椭圆积分函数最小值的局部有界性。更准确地说,积分函数 \(f(x,\nabla u)\)的增长条件从下往上涉及 u 的偏导数的不同 \(p_i>1\) 次幂和一些单项式权重 \(|x_i|^{\alpha _i p_i}\) with \(\alpha _i \in [0,1)\) ,这些权重可能退化为零。否则,从上面看,它是由u的梯度模的q次方控制的,有\(q\ge \max _i p_i\)和一个无约束权重\(\mu (x)\)。证明的主要工具是关于权重 \(|x_i|^{\alpha _i p_i}\) 的各向异性 Sobolev 不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights

We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic \(p,q-\) growth condition. More precisely, the growth condition of the integrand function \(f(x,\nabla u)\) from below involves different \(p_i>1\) powers of the partial derivatives of u and some monomial weights \(|x_i|^{\alpha _i p_i}\) with \(\alpha _i \in [0,1)\) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with \(q\ge \max _i p_i\) and an unbounded weight \(\mu (x)\). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights \(|x_i|^{\alpha _i p_i}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信