具有单项权重的各向异性函数最小化的局部有界性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro
{"title":"具有单项权重的各向异性函数最小化的局部有界性","authors":"Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro","doi":"10.1007/s10957-024-02432-3","DOIUrl":null,"url":null,"abstract":"<p>We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic <span>\\(p,q-\\)</span> growth condition. More precisely, the growth condition of the integrand function <span>\\(f(x,\\nabla u)\\)</span> from below involves different <span>\\(p_i&gt;1\\)</span> powers of the partial derivatives of <i>u</i> and some monomial weights <span>\\(|x_i|^{\\alpha _i p_i}\\)</span> with <span>\\(\\alpha _i \\in [0,1)\\)</span> that may degenerate to zero. Otherwise from above it is controlled by a <i>q</i> power of the modulus of the gradient of <i>u</i> with <span>\\(q\\ge \\max _i p_i\\)</span> and an unbounded weight <span>\\(\\mu (x)\\)</span>. The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights <span>\\(|x_i|^{\\alpha _i p_i}\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights\",\"authors\":\"Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro\",\"doi\":\"10.1007/s10957-024-02432-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic <span>\\\\(p,q-\\\\)</span> growth condition. More precisely, the growth condition of the integrand function <span>\\\\(f(x,\\\\nabla u)\\\\)</span> from below involves different <span>\\\\(p_i&gt;1\\\\)</span> powers of the partial derivatives of <i>u</i> and some monomial weights <span>\\\\(|x_i|^{\\\\alpha _i p_i}\\\\)</span> with <span>\\\\(\\\\alpha _i \\\\in [0,1)\\\\)</span> that may degenerate to zero. Otherwise from above it is controlled by a <i>q</i> power of the modulus of the gradient of <i>u</i> with <span>\\\\(q\\\\ge \\\\max _i p_i\\\\)</span> and an unbounded weight <span>\\\\(\\\\mu (x)\\\\)</span>. The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights <span>\\\\(|x_i|^{\\\\alpha _i p_i}\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02432-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02432-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有合适的各向异性 \(p,q-\)增长条件的非均匀椭圆积分函数最小值的局部有界性。更准确地说,积分函数 \(f(x,\nabla u)\)的增长条件从下往上涉及 u 的偏导数的不同 \(p_i>1\) 次幂和一些单项式权重 \(|x_i|^{\alpha _i p_i}\) with \(\alpha _i \in [0,1)\) ,这些权重可能退化为零。否则,从上面看,它是由u的梯度模的q次方控制的,有\(q\ge \max _i p_i\)和一个无约束权重\(\mu (x)\)。证明的主要工具是关于权重 \(|x_i|^{\alpha _i p_i}\) 的各向异性 Sobolev 不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights

We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic \(p,q-\) growth condition. More precisely, the growth condition of the integrand function \(f(x,\nabla u)\) from below involves different \(p_i>1\) powers of the partial derivatives of u and some monomial weights \(|x_i|^{\alpha _i p_i}\) with \(\alpha _i \in [0,1)\) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with \(q\ge \max _i p_i\) and an unbounded weight \(\mu (x)\). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights \(|x_i|^{\alpha _i p_i}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信