用马利亚文微积分计算具有随机强度的跳跃扩散模型中的定价和三角计算

Ayub Ahmadi, Mahdieh Tahmasebi
{"title":"用马利亚文微积分计算具有随机强度的跳跃扩散模型中的定价和三角计算","authors":"Ayub Ahmadi, Mahdieh Tahmasebi","doi":"arxiv-2405.00473","DOIUrl":null,"url":null,"abstract":"In this paper, the pricing of financial derivatives and the calculation of\ntheir delta Greek are investigated as the underlying asset is a jump-diffusion\nprocess in which the stochastic intensity component follows the CIR process.\nUtilizing Malliavin derivatives for pricing financial derivatives and\nchallenging to find the Malliavin weight for accurately calculating delta will\nbe established in such models. Due to the dependence of asset price on the\ninformation of the intensity process, conditional expectation attribute to show\nboundedness of moments of Malliavin weights and the underlying asset is\nessential. Our approach is validated through numerical experiments,\nhighlighting its effectiveness and potential for risk management and hedging\nstrategies in markets characterized by jump and stochastic intensity dynamics.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus\",\"authors\":\"Ayub Ahmadi, Mahdieh Tahmasebi\",\"doi\":\"arxiv-2405.00473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the pricing of financial derivatives and the calculation of\\ntheir delta Greek are investigated as the underlying asset is a jump-diffusion\\nprocess in which the stochastic intensity component follows the CIR process.\\nUtilizing Malliavin derivatives for pricing financial derivatives and\\nchallenging to find the Malliavin weight for accurately calculating delta will\\nbe established in such models. Due to the dependence of asset price on the\\ninformation of the intensity process, conditional expectation attribute to show\\nboundedness of moments of Malliavin weights and the underlying asset is\\nessential. Our approach is validated through numerical experiments,\\nhighlighting its effectiveness and potential for risk management and hedging\\nstrategies in markets characterized by jump and stochastic intensity dynamics.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.00473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了金融衍生品的定价及其希腊德尔塔的计算,因为标的资产是一个跳跃-扩散过程,其中随机强度分量遵循 CIR 过程。在此类模型中,将利用马利亚文衍生品为金融衍生品定价,并寻找马利亚文权重以准确计算德尔塔。由于资产价格依赖于强度过程的信息,因此条件期望属性对于显示 Malliavin 权重和相关资产的矩的有界性至关重要。我们的方法通过数值实验进行了验证,突出了它在以跳跃和随机强度动态为特征的市场中进行风险管理和对冲策略的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus
In this paper, the pricing of financial derivatives and the calculation of their delta Greek are investigated as the underlying asset is a jump-diffusion process in which the stochastic intensity component follows the CIR process. Utilizing Malliavin derivatives for pricing financial derivatives and challenging to find the Malliavin weight for accurately calculating delta will be established in such models. Due to the dependence of asset price on the information of the intensity process, conditional expectation attribute to show boundedness of moments of Malliavin weights and the underlying asset is essential. Our approach is validated through numerical experiments, highlighting its effectiveness and potential for risk management and hedging strategies in markets characterized by jump and stochastic intensity dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信