由准周期性紊乱诱发的新兴非阿贝尔无汝泵送

Sen Huang, Yan-Qing Zhu, Zhi Li
{"title":"由准周期性紊乱诱发的新兴非阿贝尔无汝泵送","authors":"Sen Huang, Yan-Qing Zhu, Zhi Li","doi":"arxiv-2404.18491","DOIUrl":null,"url":null,"abstract":"We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb\nchain with degenerate flat bands. The results reveal that quasiperiodic\ndisorder will cause a topological phase transition from the trivial (without\nnon-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless\npumping) phase. The mechanism behind is that the monopole originally outside\nthe topological region can be driven into the topological region due to the\nintroduction of quasiperiodic disorder. Moreover, since the corresponding\nmonopole will turn into a nodal line to spread beyond the boundaries of the\ntopological region, the system with large disorder strength will result in the\ndisappearance of non-Abelian Thouless pumping. Furthermore, we numerically\nsimulate the Thouless pumping of non-Abelian systems, and the evolution results\nof center of mass' displacement are consistent with the Chern number. Finally,\nwe discuss the localization properties of the system and find that, similar to\n[PRL 130, 206401(2023)], the inverse Anderson transition does not occur in the\nsystem with the increase of quasiperiodic strength, while the system still\nmaintains the coexistence of localized and extended states.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent Non-Abelian Thouless Pumping Induced by the Quasiperiodic Disorder\",\"authors\":\"Sen Huang, Yan-Qing Zhu, Zhi Li\",\"doi\":\"arxiv-2404.18491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb\\nchain with degenerate flat bands. The results reveal that quasiperiodic\\ndisorder will cause a topological phase transition from the trivial (without\\nnon-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless\\npumping) phase. The mechanism behind is that the monopole originally outside\\nthe topological region can be driven into the topological region due to the\\nintroduction of quasiperiodic disorder. Moreover, since the corresponding\\nmonopole will turn into a nodal line to spread beyond the boundaries of the\\ntopological region, the system with large disorder strength will result in the\\ndisappearance of non-Abelian Thouless pumping. Furthermore, we numerically\\nsimulate the Thouless pumping of non-Abelian systems, and the evolution results\\nof center of mass' displacement are consistent with the Chern number. Finally,\\nwe discuss the localization properties of the system and find that, similar to\\n[PRL 130, 206401(2023)], the inverse Anderson transition does not occur in the\\nsystem with the increase of quasiperiodic strength, while the system still\\nmaintains the coexistence of localized and extended states.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.18491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有退化平坦带的无序可调谐李卜链中的非阿贝尔无汝泵送。结果表明,准周期无序会导致拓扑相变,从三相(无非阿贝尔无汝泵送)到非三相(有非阿贝尔无汝泵送)。其背后的机制是,由于引入了准周期无序,原本在拓扑区域之外的单极子可以被驱动进入拓扑区域。此外,由于相应的单极子会变成节点线扩散到拓扑区域的边界之外,因此无序强度较大的系统会导致非阿贝尔无苏泵浦的消失。此外,我们对非阿贝尔系统的无汝抽运进行了数值模拟,质心位移的演化结果与切尔数一致。最后,我们讨论了系统的局域化性质,发现与[PRL 130, 206401(2023)] 类似,系统中的反安德森转变并没有随着准周期强度的增加而发生,系统仍然保持着局域态和扩展态的共存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent Non-Abelian Thouless Pumping Induced by the Quasiperiodic Disorder
We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside the topological region can be driven into the topological region due to the introduction of quasiperiodic disorder. Moreover, since the corresponding monopole will turn into a nodal line to spread beyond the boundaries of the topological region, the system with large disorder strength will result in the disappearance of non-Abelian Thouless pumping. Furthermore, we numerically simulate the Thouless pumping of non-Abelian systems, and the evolution results of center of mass' displacement are consistent with the Chern number. Finally, we discuss the localization properties of the system and find that, similar to [PRL 130, 206401(2023)], the inverse Anderson transition does not occur in the system with the increase of quasiperiodic strength, while the system still maintains the coexistence of localized and extended states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信