{"title":"随机三维广义纳维-斯托克斯方程的平均原理","authors":"Hui Liu, Lin Lin, Yangyang Shi","doi":"10.1142/s0219493724500059","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the multiscale stochastic 3D generalized Navier–Stokes equations are studied. By using Khasminkii’s time discretization approach and the technique of stopping time, the strong averaging principle for stochastic 3D generalized Navier–Stokes equations is proved in the space <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging principle for stochastic 3D generalized Navier–Stokes equations\",\"authors\":\"Hui Liu, Lin Lin, Yangyang Shi\",\"doi\":\"10.1142/s0219493724500059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the multiscale stochastic 3D generalized Navier–Stokes equations are studied. By using Khasminkii’s time discretization approach and the technique of stopping time, the strong averaging principle for stochastic 3D generalized Navier–Stokes equations is proved in the space <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493724500059\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493724500059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Averaging principle for stochastic 3D generalized Navier–Stokes equations
In this paper, the multiscale stochastic 3D generalized Navier–Stokes equations are studied. By using Khasminkii’s time discretization approach and the technique of stopping time, the strong averaging principle for stochastic 3D generalized Navier–Stokes equations is proved in the space .
期刊介绍:
This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view.
Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.