{"title":"具有 Wong-Zakai 噪声的二维金兹堡-兰道方程随机吸引子的二元鲁棒性","authors":"Yangrong Li, Fengling Wang","doi":"10.1142/s0219493724500102","DOIUrl":null,"url":null,"abstract":"<p>Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using <i>part</i> joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":"80 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary robustness of random attractors for 2D-Ginzburg–Landau equations with Wong–Zakai noise\",\"authors\":\"Yangrong Li, Fengling Wang\",\"doi\":\"10.1142/s0219493724500102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using <i>part</i> joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493724500102\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493724500102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Binary robustness of random attractors for 2D-Ginzburg–Landau equations with Wong–Zakai noise
Consider a non-autonomous 2D-Ginzburg–Landau equation driven by Wong–Zakai noise or white noise, respectively, we first show the existence of pullback random attractors, which are random compact attracting sets indexed by two parameters: the size of Wong–Zakai noise and the current time. We then establish the robustness of the attractors when both parameters are simultaneously convergent. An essential difficulty arises from the possible loss of the convergence of solutions and only part convergence of solutions is available, which is a new phenomenon for 2D-GL equation distinguishing with the 1D case. So, by using part joint-convergence, regularity, eventual local-compactness and recurrence, we establish a binary robustness theorem of pullback random attractors and apply it to the weakly dissipative stochastic equation.
期刊介绍:
This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view.
Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.