{"title":"脉冲随机神经场晶格模型的动力学行为","authors":"Tianhao Zeng, Shaoyue Mi, Dingshi Li","doi":"10.1142/s0219493724500126","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the asymptotic behaviors of the solutions of an impulsive stochastic neural field lattice model driven by nonlinear noise. We first show the existence and uniqueness of weak pullback mean random attractors for the impulsive stochastic systems. Then by the properties of Markov processes, the existence of evolution system of measures for the impulsive stochastic systems is established. To this end, we employ the idea of uniform estimates on the tails of the solutions to show the tightness of a family of distributions of the solutions of the lattice systems.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behaviors of an impulsive stochastic neural field lattice model\",\"authors\":\"Tianhao Zeng, Shaoyue Mi, Dingshi Li\",\"doi\":\"10.1142/s0219493724500126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the asymptotic behaviors of the solutions of an impulsive stochastic neural field lattice model driven by nonlinear noise. We first show the existence and uniqueness of weak pullback mean random attractors for the impulsive stochastic systems. Then by the properties of Markov processes, the existence of evolution system of measures for the impulsive stochastic systems is established. To this end, we employ the idea of uniform estimates on the tails of the solutions to show the tightness of a family of distributions of the solutions of the lattice systems.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493724500126\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493724500126","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Dynamical behaviors of an impulsive stochastic neural field lattice model
This paper is concerned with the asymptotic behaviors of the solutions of an impulsive stochastic neural field lattice model driven by nonlinear noise. We first show the existence and uniqueness of weak pullback mean random attractors for the impulsive stochastic systems. Then by the properties of Markov processes, the existence of evolution system of measures for the impulsive stochastic systems is established. To this end, we employ the idea of uniform estimates on the tails of the solutions to show the tightness of a family of distributions of the solutions of the lattice systems.
期刊介绍:
This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view.
Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.