Hamid Mraoui, Ahmed El-Alaoui, Souad Bechrouri, Nezha Mohaoui, Abdelilah Monir
{"title":"基于局部多项式核回归的两阶段回归样条线建模","authors":"Hamid Mraoui, Ahmed El-Alaoui, Souad Bechrouri, Nezha Mohaoui, Abdelilah Monir","doi":"10.1007/s00180-024-01498-x","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new nonparametric estimator of the regression based on local quasi-interpolation spline method. This model combines a B-spline basis with a simple local polynomial regression, via blossoming approach, to produce a reduced rank spline like smoother. Different coefficients functionals are allowed to have different smoothing parameters (bandwidths) if the function has different smoothness. In addition, the number and location of the knots of this estimator are not fixed. In practice, we may employ a modest number of basis functions and then determine the smoothing parameter as the minimizer of the criterion. In simulations, the approach achieves very competitive performance with P-spline and smoothing spline methods. Simulated data and a real data example are used to illustrate the effectiveness of the method proposed in this paper.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage regression spline modeling based on local polynomial kernel regression\",\"authors\":\"Hamid Mraoui, Ahmed El-Alaoui, Souad Bechrouri, Nezha Mohaoui, Abdelilah Monir\",\"doi\":\"10.1007/s00180-024-01498-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a new nonparametric estimator of the regression based on local quasi-interpolation spline method. This model combines a B-spline basis with a simple local polynomial regression, via blossoming approach, to produce a reduced rank spline like smoother. Different coefficients functionals are allowed to have different smoothing parameters (bandwidths) if the function has different smoothness. In addition, the number and location of the knots of this estimator are not fixed. In practice, we may employ a modest number of basis functions and then determine the smoothing parameter as the minimizer of the criterion. In simulations, the approach achieves very competitive performance with P-spline and smoothing spline methods. Simulated data and a real data example are used to illustrate the effectiveness of the method proposed in this paper.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01498-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01498-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种基于局部准插值样条法的新的非参数估计回归模型。该模型通过绽放法将 B-样条曲线基础与简单的局部多项式回归相结合,生成类似于减阶样条曲线的平滑器。如果函数的平滑度不同,则允许不同的系数函数具有不同的平滑参数(带宽)。此外,该估计器的节点数量和位置也不是固定的。在实践中,我们可以采用数量适中的基函数,然后根据准则的最小化确定平滑参数。在模拟实验中,该方法与 P 样条法和平滑样条法相比,性能极具竞争力。本文使用模拟数据和真实数据实例来说明本文所提方法的有效性。
Two-stage regression spline modeling based on local polynomial kernel regression
This paper introduces a new nonparametric estimator of the regression based on local quasi-interpolation spline method. This model combines a B-spline basis with a simple local polynomial regression, via blossoming approach, to produce a reduced rank spline like smoother. Different coefficients functionals are allowed to have different smoothing parameters (bandwidths) if the function has different smoothness. In addition, the number and location of the knots of this estimator are not fixed. In practice, we may employ a modest number of basis functions and then determine the smoothing parameter as the minimizer of the criterion. In simulations, the approach achieves very competitive performance with P-spline and smoothing spline methods. Simulated data and a real data example are used to illustrate the effectiveness of the method proposed in this paper.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.