q 变霍尔曼德函数微积分与薛定谔和波最大估计

IF 1 3区 数学 Q1 MATHEMATICS
Luc Deleaval, Christoph Kriegler
{"title":"q 变霍尔曼德函数微积分与薛定谔和波最大估计","authors":"Luc Deleaval, Christoph Kriegler","doi":"10.1007/s00209-024-03488-7","DOIUrl":null,"url":null,"abstract":"<p>This article is the continuation of the work [30] where we had proved maximal estimates </p><span>$$\\begin{aligned} \\left\\| \\sup _{t &gt; 0} |m(tA)f| \\, \\right\\| _{L^p(\\Omega ,Y)} \\leqslant C \\left\\| f\\right\\| _{L^p(\\Omega ,Y)} \\end{aligned}$$</span><p>for sectorial operators <i>A</i> acting on <span>\\(L^p(\\Omega ,Y)\\)</span> (<i>Y</i> being a UMD lattice) and admitting a Hörmander functional calculus (a strengthening of the holomorphic <span>\\(H^\\infty \\)</span> calculus to symbols <i>m</i> differentiable on <span>\\((0,\\infty )\\)</span> in a quantified manner), and <span>\\(m : (0, \\infty ) \\rightarrow \\mathbb {C}\\)</span> being a Hörmander class symbol with certain decay at <span>\\(\\infty \\)</span>. In the present article, we show that under the same conditions as above, the scalar function <span>\\(t \\mapsto m(tA)f(x,\\omega )\\)</span> is of finite <i>q</i>-variation with <span>\\(q &gt; 2\\)</span>, a.e. <span>\\((x,\\omega )\\)</span>. This extends recent works by [13, 44,45,46, 52, 61] who have considered among others <span>\\(m(tA) = e^{-tA}\\)</span> the semigroup generated by <span>\\(-A\\)</span>. As a consequence, we extend estimates for spherical means in euclidean space from [52] to the case of UMD lattice-valued spaces. A second main result yields a maximal estimate </p><span>$$\\begin{aligned} \\left\\| \\sup _{t &gt; 0} |m(tA) f_t| \\, \\right\\| _{L^p(\\Omega ,Y)} \\leqslant C \\left\\| f_t\\right\\| _{L^p(\\Omega ,Y(\\Lambda ^\\beta ))} \\end{aligned}$$</span><p>for the same <i>A</i> and similar conditions on <i>m</i> as above but with <span>\\(f_t\\)</span> depending itself on <i>t</i> such that <span>\\(t \\mapsto f_t(x,\\omega )\\)</span> belongs to a Sobolev space <span>\\(\\Lambda ^\\beta \\)</span> over <span>\\((\\mathbb {R}_+, \\frac{dt}{t})\\)</span>. We apply this to show a maximal estimate of the Schrödinger (case <span>\\(A = -\\Delta \\)</span>) or wave (case <span>\\(A = \\sqrt{-\\Delta }\\)</span>) solution propagator <span>\\(t \\mapsto \\exp (itA)f\\)</span>. Then we deduce from it solutions to variants of Carleson’s problem of pointwise convergence [18] </p><span>$$\\begin{aligned} \\exp (itA)f(x,\\omega ) \\rightarrow f(x,\\omega ) \\text { a. e. }(x,\\omega ) \\quad (t \\rightarrow 0+) \\end{aligned}$$</span><p>for <i>A</i> a Fourier multiplier operator or a differential operator on an open domain <span>\\(\\Omega \\subseteq \\mathbb {R}^d\\)</span> with boundary conditions.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-variational Hörmander functional calculus and Schrödinger and wave maximal estimates\",\"authors\":\"Luc Deleaval, Christoph Kriegler\",\"doi\":\"10.1007/s00209-024-03488-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is the continuation of the work [30] where we had proved maximal estimates </p><span>$$\\\\begin{aligned} \\\\left\\\\| \\\\sup _{t &gt; 0} |m(tA)f| \\\\, \\\\right\\\\| _{L^p(\\\\Omega ,Y)} \\\\leqslant C \\\\left\\\\| f\\\\right\\\\| _{L^p(\\\\Omega ,Y)} \\\\end{aligned}$$</span><p>for sectorial operators <i>A</i> acting on <span>\\\\(L^p(\\\\Omega ,Y)\\\\)</span> (<i>Y</i> being a UMD lattice) and admitting a Hörmander functional calculus (a strengthening of the holomorphic <span>\\\\(H^\\\\infty \\\\)</span> calculus to symbols <i>m</i> differentiable on <span>\\\\((0,\\\\infty )\\\\)</span> in a quantified manner), and <span>\\\\(m : (0, \\\\infty ) \\\\rightarrow \\\\mathbb {C}\\\\)</span> being a Hörmander class symbol with certain decay at <span>\\\\(\\\\infty \\\\)</span>. In the present article, we show that under the same conditions as above, the scalar function <span>\\\\(t \\\\mapsto m(tA)f(x,\\\\omega )\\\\)</span> is of finite <i>q</i>-variation with <span>\\\\(q &gt; 2\\\\)</span>, a.e. <span>\\\\((x,\\\\omega )\\\\)</span>. This extends recent works by [13, 44,45,46, 52, 61] who have considered among others <span>\\\\(m(tA) = e^{-tA}\\\\)</span> the semigroup generated by <span>\\\\(-A\\\\)</span>. As a consequence, we extend estimates for spherical means in euclidean space from [52] to the case of UMD lattice-valued spaces. A second main result yields a maximal estimate </p><span>$$\\\\begin{aligned} \\\\left\\\\| \\\\sup _{t &gt; 0} |m(tA) f_t| \\\\, \\\\right\\\\| _{L^p(\\\\Omega ,Y)} \\\\leqslant C \\\\left\\\\| f_t\\\\right\\\\| _{L^p(\\\\Omega ,Y(\\\\Lambda ^\\\\beta ))} \\\\end{aligned}$$</span><p>for the same <i>A</i> and similar conditions on <i>m</i> as above but with <span>\\\\(f_t\\\\)</span> depending itself on <i>t</i> such that <span>\\\\(t \\\\mapsto f_t(x,\\\\omega )\\\\)</span> belongs to a Sobolev space <span>\\\\(\\\\Lambda ^\\\\beta \\\\)</span> over <span>\\\\((\\\\mathbb {R}_+, \\\\frac{dt}{t})\\\\)</span>. We apply this to show a maximal estimate of the Schrödinger (case <span>\\\\(A = -\\\\Delta \\\\)</span>) or wave (case <span>\\\\(A = \\\\sqrt{-\\\\Delta }\\\\)</span>) solution propagator <span>\\\\(t \\\\mapsto \\\\exp (itA)f\\\\)</span>. Then we deduce from it solutions to variants of Carleson’s problem of pointwise convergence [18] </p><span>$$\\\\begin{aligned} \\\\exp (itA)f(x,\\\\omega ) \\\\rightarrow f(x,\\\\omega ) \\\\text { a. e. }(x,\\\\omega ) \\\\quad (t \\\\rightarrow 0+) \\\\end{aligned}$$</span><p>for <i>A</i> a Fourier multiplier operator or a differential operator on an open domain <span>\\\\(\\\\Omega \\\\subseteq \\\\mathbb {R}^d\\\\)</span> with boundary conditions.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03488-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03488-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是 [30] 工作的继续,在 [30] 中我们证明了最大估计值 $$\begin{aligned}\left\| \sup _{t >;0} |m(tA)f| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f\right\| _{L^p(\Omega ,Y)} \end{aligned}$$ 对于作用在 \(L^p(\Omega 、Y)上作用的扇形算子 A(Y 是一个 UMD 网格),并且允许一个 Hörmander 函数微积分(全态 \(H^\infty)微积分的加强,以量化的方式在 \((0,\infty )上可微分的符号 m),以及 \(m :(0, \infty ) rightarrow \mathbb {C}\) 是在\(\infty \)有一定衰减的霍曼德类符号。在本文中,我们证明了在上述相同条件下,标量函数 \(t \mapsto m(tA)f(x,\omega )\) 是有限q变的,即 \((x,\omega )\) 。这扩展了[13, 44,45,46, 52, 61]最近的工作,他们考虑了\(m(tA) = e^{-tA}\) 所产生的半群。因此,我们将 [52] 中对欧几里得空间中球面均值的估计扩展到了 UMD 格值空间的情形。第二个主要结果产生了一个最大估计 $$\begin{aligned}\left\| \sup _{t > 0} |m(tA) f_t| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f_t\right\| _{L^p(\Omega ,Y(\Lambda ^\beta ))}\end{aligned}$$对于上面相同的 A 和类似的 m 条件,但是 \(f_t\) 本身依赖于 t,这样 \(t \mapsto f_t(x,\omega )\) 属于一个 Sobolev 空间 \(\Lambda ^\beta \) over \((\mathbb {R}_+, \frac{dt}{t})\)。我们以此来展示薛定谔(A = -\Delta \)或波(A = \sqrt{-\Delta })解传播者\(t \mapsto \exp (itA)f\) 的最大估计值。然后我们从中推导出卡莱森点式收敛问题变体的解[18] $$\begin{aligned}\ext { a. e. }(x,\omega ) \quad (t \rightarrow 0+) \end{aligned}$$对于 A 一个傅立叶乘法算子或一个具有边界条件的开放域 \(\Omega \subseteq \mathbb {R}^d\)上的微分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-variational Hörmander functional calculus and Schrödinger and wave maximal estimates

This article is the continuation of the work [30] where we had proved maximal estimates

$$\begin{aligned} \left\| \sup _{t > 0} |m(tA)f| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f\right\| _{L^p(\Omega ,Y)} \end{aligned}$$

for sectorial operators A acting on \(L^p(\Omega ,Y)\) (Y being a UMD lattice) and admitting a Hörmander functional calculus (a strengthening of the holomorphic \(H^\infty \) calculus to symbols m differentiable on \((0,\infty )\) in a quantified manner), and \(m : (0, \infty ) \rightarrow \mathbb {C}\) being a Hörmander class symbol with certain decay at \(\infty \). In the present article, we show that under the same conditions as above, the scalar function \(t \mapsto m(tA)f(x,\omega )\) is of finite q-variation with \(q > 2\), a.e. \((x,\omega )\). This extends recent works by [13, 44,45,46, 52, 61] who have considered among others \(m(tA) = e^{-tA}\) the semigroup generated by \(-A\). As a consequence, we extend estimates for spherical means in euclidean space from [52] to the case of UMD lattice-valued spaces. A second main result yields a maximal estimate

$$\begin{aligned} \left\| \sup _{t > 0} |m(tA) f_t| \, \right\| _{L^p(\Omega ,Y)} \leqslant C \left\| f_t\right\| _{L^p(\Omega ,Y(\Lambda ^\beta ))} \end{aligned}$$

for the same A and similar conditions on m as above but with \(f_t\) depending itself on t such that \(t \mapsto f_t(x,\omega )\) belongs to a Sobolev space \(\Lambda ^\beta \) over \((\mathbb {R}_+, \frac{dt}{t})\). We apply this to show a maximal estimate of the Schrödinger (case \(A = -\Delta \)) or wave (case \(A = \sqrt{-\Delta }\)) solution propagator \(t \mapsto \exp (itA)f\). Then we deduce from it solutions to variants of Carleson’s problem of pointwise convergence [18]

$$\begin{aligned} \exp (itA)f(x,\omega ) \rightarrow f(x,\omega ) \text { a. e. }(x,\omega ) \quad (t \rightarrow 0+) \end{aligned}$$

for A a Fourier multiplier operator or a differential operator on an open domain \(\Omega \subseteq \mathbb {R}^d\) with boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信