计算混沌序列空间复杂性的平滑分析

Naoaki Okada, Shuji Kijima
{"title":"计算混沌序列空间复杂性的平滑分析","authors":"Naoaki Okada, Shuji Kijima","doi":"arxiv-2405.00327","DOIUrl":null,"url":null,"abstract":"This work is motivated by a question whether it is possible to calculate a\nchaotic sequence efficiently, e.g., is it possible to get the $n$-th bit of a\nbit sequence generated by a chaotic map, such as $\\beta$-expansion, tent map\nand logistic map in $\\mathrm{o}(n)$ time/space? This paper gives an affirmative\nanswer to the question about the space complexity of a tent map. We show that\nthe decision problem of whether a given bit sequence is a valid tent code is\nsolved in $\\mathrm{O}(\\log^{2} n)$ space in a sense of the smoothed complexity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"2019 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Smoothed Analysis of the Space Complexity of Computing a Chaotic Sequence\",\"authors\":\"Naoaki Okada, Shuji Kijima\",\"doi\":\"arxiv-2405.00327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by a question whether it is possible to calculate a\\nchaotic sequence efficiently, e.g., is it possible to get the $n$-th bit of a\\nbit sequence generated by a chaotic map, such as $\\\\beta$-expansion, tent map\\nand logistic map in $\\\\mathrm{o}(n)$ time/space? This paper gives an affirmative\\nanswer to the question about the space complexity of a tent map. We show that\\nthe decision problem of whether a given bit sequence is a valid tent code is\\nsolved in $\\\\mathrm{O}(\\\\log^{2} n)$ space in a sense of the smoothed complexity.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"2019 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.00327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的动机来自于一个问题:是否有可能高效地计算混沌序列?例如,是否有可能在$\mathrm{o}(n)$时间/空间内得到由混沌图(如$\beta$-expansion、tent map和logistic map)产生的abit序列的$n$-th bit?本文对帐篷图的空间复杂性问题给出了肯定的答案。我们证明,在$\mathrm{O}(\log^{2} n)$空间中,在平滑复杂度的意义上,可以解决给定比特序列是否为有效帐篷码的判定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Smoothed Analysis of the Space Complexity of Computing a Chaotic Sequence
This work is motivated by a question whether it is possible to calculate a chaotic sequence efficiently, e.g., is it possible to get the $n$-th bit of a bit sequence generated by a chaotic map, such as $\beta$-expansion, tent map and logistic map in $\mathrm{o}(n)$ time/space? This paper gives an affirmative answer to the question about the space complexity of a tent map. We show that the decision problem of whether a given bit sequence is a valid tent code is solved in $\mathrm{O}(\log^{2} n)$ space in a sense of the smoothed complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信