{"title":"没有 $\\mathrm{UP}$ 完整集合,但有 $\\mathrm{NP}=\\mathrm{PSPACE}$ 的 Oracle","authors":"David Dingel, Fabian Egidy, Christian Glaßer","doi":"arxiv-2404.19104","DOIUrl":null,"url":null,"abstract":"We construct an oracle relative to which $\\mathrm{NP} = \\mathrm{PSPACE}$, but\n$\\mathrm{UP}$ has no many-one complete sets. This combines the properties of an\noracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra\n[OH93]. The oracle provides new separations of classical conjectures on optimal proof\nsystems and complete sets in promise classes. This answers several questions by\nPudl\\'ak [Pud17], e.g., the implications $\\mathsf{UP} \\Longrightarrow\n\\mathsf{CON}^{\\mathsf{N}}$ and $\\mathsf{SAT} \\Longrightarrow \\mathsf{TFNP}$ are\nfalse relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that\n$\\mathrm{TFNP}$-complete problems exist, while at the same time $\\mathrm{SAT}$\nhas no p-optimal proof systems.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Oracle with no $\\\\mathrm{UP}$-Complete Sets, but $\\\\mathrm{NP}=\\\\mathrm{PSPACE}$\",\"authors\":\"David Dingel, Fabian Egidy, Christian Glaßer\",\"doi\":\"arxiv-2404.19104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an oracle relative to which $\\\\mathrm{NP} = \\\\mathrm{PSPACE}$, but\\n$\\\\mathrm{UP}$ has no many-one complete sets. This combines the properties of an\\noracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra\\n[OH93]. The oracle provides new separations of classical conjectures on optimal proof\\nsystems and complete sets in promise classes. This answers several questions by\\nPudl\\\\'ak [Pud17], e.g., the implications $\\\\mathsf{UP} \\\\Longrightarrow\\n\\\\mathsf{CON}^{\\\\mathsf{N}}$ and $\\\\mathsf{SAT} \\\\Longrightarrow \\\\mathsf{TFNP}$ are\\nfalse relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that\\n$\\\\mathrm{TFNP}$-complete problems exist, while at the same time $\\\\mathrm{SAT}$\\nhas no p-optimal proof systems.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.19104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.19104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Oracle with no $\mathrm{UP}$-Complete Sets, but $\mathrm{NP}=\mathrm{PSPACE}$
We construct an oracle relative to which $\mathrm{NP} = \mathrm{PSPACE}$, but
$\mathrm{UP}$ has no many-one complete sets. This combines the properties of an
oracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra
[OH93]. The oracle provides new separations of classical conjectures on optimal proof
systems and complete sets in promise classes. This answers several questions by
Pudl\'ak [Pud17], e.g., the implications $\mathsf{UP} \Longrightarrow
\mathsf{CON}^{\mathsf{N}}$ and $\mathsf{SAT} \Longrightarrow \mathsf{TFNP}$ are
false relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that
$\mathrm{TFNP}$-complete problems exist, while at the same time $\mathrm{SAT}$
has no p-optimal proof systems.