没有 $\mathrm{UP}$ 完整集合,但有 $\mathrm{NP}=\mathrm{PSPACE}$ 的 Oracle

David Dingel, Fabian Egidy, Christian Glaßer
{"title":"没有 $\\mathrm{UP}$ 完整集合,但有 $\\mathrm{NP}=\\mathrm{PSPACE}$ 的 Oracle","authors":"David Dingel, Fabian Egidy, Christian Glaßer","doi":"arxiv-2404.19104","DOIUrl":null,"url":null,"abstract":"We construct an oracle relative to which $\\mathrm{NP} = \\mathrm{PSPACE}$, but\n$\\mathrm{UP}$ has no many-one complete sets. This combines the properties of an\noracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra\n[OH93]. The oracle provides new separations of classical conjectures on optimal proof\nsystems and complete sets in promise classes. This answers several questions by\nPudl\\'ak [Pud17], e.g., the implications $\\mathsf{UP} \\Longrightarrow\n\\mathsf{CON}^{\\mathsf{N}}$ and $\\mathsf{SAT} \\Longrightarrow \\mathsf{TFNP}$ are\nfalse relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that\n$\\mathrm{TFNP}$-complete problems exist, while at the same time $\\mathrm{SAT}$\nhas no p-optimal proof systems.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Oracle with no $\\\\mathrm{UP}$-Complete Sets, but $\\\\mathrm{NP}=\\\\mathrm{PSPACE}$\",\"authors\":\"David Dingel, Fabian Egidy, Christian Glaßer\",\"doi\":\"arxiv-2404.19104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an oracle relative to which $\\\\mathrm{NP} = \\\\mathrm{PSPACE}$, but\\n$\\\\mathrm{UP}$ has no many-one complete sets. This combines the properties of an\\noracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra\\n[OH93]. The oracle provides new separations of classical conjectures on optimal proof\\nsystems and complete sets in promise classes. This answers several questions by\\nPudl\\\\'ak [Pud17], e.g., the implications $\\\\mathsf{UP} \\\\Longrightarrow\\n\\\\mathsf{CON}^{\\\\mathsf{N}}$ and $\\\\mathsf{SAT} \\\\Longrightarrow \\\\mathsf{TFNP}$ are\\nfalse relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that\\n$\\\\mathrm{TFNP}$-complete problems exist, while at the same time $\\\\mathrm{SAT}$\\nhas no p-optimal proof systems.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.19104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.19104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个相对于 $\mathrm{NP} = \mathrm{PSPACE}$,但$\mathrm{UP}$ 没有多一全集的神谕。这结合了哈特曼尼斯和赫马钱德拉[HH88]的神谕以及荻原和赫马钱德拉[OH93]的神谕的性质。该神谕提供了关于最优证明系统和承诺类中完整集合的经典猜想的新分离。这回答了Pudl\'ak [Pud17]提出的几个问题,例如,$\mathsf{UP}的含义\$\Longrightarrow\mathsf{CON}^{mathsf{N}}$ 和 $\mathsf{SAT}\相对于我们的神谕来说都是假的。此外,这个神谕证明,原则上$mathrm{TFNP}$完备问题是可能存在的,而同时$mathrm{SAT}$没有p最优证明系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Oracle with no $\mathrm{UP}$-Complete Sets, but $\mathrm{NP}=\mathrm{PSPACE}$
We construct an oracle relative to which $\mathrm{NP} = \mathrm{PSPACE}$, but $\mathrm{UP}$ has no many-one complete sets. This combines the properties of an oracle by Hartmanis and Hemachandra [HH88] and one by Ogiwara and Hemachandra [OH93]. The oracle provides new separations of classical conjectures on optimal proof systems and complete sets in promise classes. This answers several questions by Pudl\'ak [Pud17], e.g., the implications $\mathsf{UP} \Longrightarrow \mathsf{CON}^{\mathsf{N}}$ and $\mathsf{SAT} \Longrightarrow \mathsf{TFNP}$ are false relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that $\mathrm{TFNP}$-complete problems exist, while at the same time $\mathrm{SAT}$ has no p-optimal proof systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信