带边界条件的顺序型ψ-希尔费受电弓分式微分方程的新方法

IF 1.7 4区 数学 Q1 Mathematics
Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali
{"title":"带边界条件的顺序型ψ-希尔费受电弓分式微分方程的新方法","authors":"Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali","doi":"10.1186/s13661-024-01861-3","DOIUrl":null,"url":null,"abstract":"This article investigates sufficient conditions for the existence and uniqueness of solutions to the ψ-Hilfer sequential type pantograph fractional boundary value problem. Considering the system depends on a lower-order fractional derivative of an unknown function, the study is carried out in a special working space. Standard fixed point theorems such as the Banach contraction principle and Krasnosel’skii’s fixed point theorem are applied to prove the uniqueness and the existence of a solution, respectively. Finally, an example demonstrating our results with numerical simulations is presented.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions\",\"authors\":\"Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali\",\"doi\":\"10.1186/s13661-024-01861-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates sufficient conditions for the existence and uniqueness of solutions to the ψ-Hilfer sequential type pantograph fractional boundary value problem. Considering the system depends on a lower-order fractional derivative of an unknown function, the study is carried out in a special working space. Standard fixed point theorems such as the Banach contraction principle and Krasnosel’skii’s fixed point theorem are applied to prove the uniqueness and the existence of a solution, respectively. Finally, an example demonstrating our results with numerical simulations is presented.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01861-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01861-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了ψ-Hilfer 顺序型受电弓分数边界值问题解的存在性和唯一性的充分条件。考虑到系统取决于未知函数的低阶分数导数,研究在特殊的工作空间中进行。应用巴纳赫收缩原理和 Krasnosel'skii 定点定理等标准定点定理分别证明了解的唯一性和存在性。最后,介绍了一个用数值模拟来证明我们的结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions
This article investigates sufficient conditions for the existence and uniqueness of solutions to the ψ-Hilfer sequential type pantograph fractional boundary value problem. Considering the system depends on a lower-order fractional derivative of an unknown function, the study is carried out in a special working space. Standard fixed point theorems such as the Banach contraction principle and Krasnosel’skii’s fixed point theorem are applied to prove the uniqueness and the existence of a solution, respectively. Finally, an example demonstrating our results with numerical simulations is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信