Tawnee M. Ens, James A. Kaduk, Anja Dosen, Thomas N. Blanton
{"title":"宁替尼酯半水合物(C31H33N5O4)(C2H5O3S)(H2O)0.5的粉末 X 射线衍射","authors":"Tawnee M. Ens, James A. Kaduk, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000186","DOIUrl":null,"url":null,"abstract":"The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group <jats:italic>P-1</jats:italic> (#2) with <jats:italic>a</jats:italic> = 11.5137(1), <jats:italic>b</jats:italic> = 16.3208(4), <jats:italic>c</jats:italic> = 19.1780(5) Å, <jats:italic>α</jats:italic> = 69.0259(12), <jats:italic>β</jats:italic> = 84.4955(8), <jats:italic>γ</jats:italic> = 89.8319(6)°, <jats:italic>V</jats:italic> = 3347.57(3) Å<jats:sup>3</jats:sup>, and <jats:italic>Z</jats:italic> = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"30 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powder X-ray diffraction of nintedanib esylate hemihydrate, (C31H33N5O4)(C2H5O3S)(H2O)0.5\",\"authors\":\"Tawnee M. Ens, James A. Kaduk, Anja Dosen, Thomas N. Blanton\",\"doi\":\"10.1017/s0885715624000186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group <jats:italic>P-1</jats:italic> (#2) with <jats:italic>a</jats:italic> = 11.5137(1), <jats:italic>b</jats:italic> = 16.3208(4), <jats:italic>c</jats:italic> = 19.1780(5) Å, <jats:italic>α</jats:italic> = 69.0259(12), <jats:italic>β</jats:italic> = 84.4955(8), <jats:italic>γ</jats:italic> = 89.8319(6)°, <jats:italic>V</jats:italic> = 3347.57(3) Å<jats:sup>3</jats:sup>, and <jats:italic>Z</jats:italic> = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/s0885715624000186\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715624000186","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Powder X-ray diffraction of nintedanib esylate hemihydrate, (C31H33N5O4)(C2H5O3S)(H2O)0.5
The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group P-1 (#2) with a = 11.5137(1), b = 16.3208(4), c = 19.1780(5) Å, α = 69.0259(12), β = 84.4955(8), γ = 89.8319(6)°, V = 3347.57(3) Å3, and Z = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).