{"title":"独立太阳能光伏系统的技术经济建模:南苏丹案例","authors":"Aban Ayik;Nelson Ijumba;Charles Kabiri;Philippe Goffin","doi":"10.23919/SAIEE.2024.10520213","DOIUrl":null,"url":null,"abstract":"South Sudan is expansive and sparsely populated with over 80% of the population living in rural areas. The country has no national grid connecting its cities and towns, thus making rural areas “good candidates” for stand-alone renewable energy systems. This study was conducted to determine the technical feasibility and economic viability of a stand-alone photovoltaic (PV) system compared to a diesel generator. A technoeconomic model was developed to forecast the performance of the PV system. The system was initially designed using the IEEE Recommended Practice for Sizing of Stand-Alone Photovoltaic Systems (IEEE P1562-2021) and the IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic Systems (IEEE 1013-2019). The solar radiation data used for modeling were acquired from the Ineichen clear sky model and then transposed to the plane of array irradiation using pvlib python. The system optimization and sensitivity analysis was performed under various diesel fuel costs using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Results show that at a fuel price of $ 2 per liter, the levelized cost of electricity (LCOE) of the PV system is 64% lower than that of the diesel generator and that the system can earn 11% return on investment (ROI) and recover the investment in about 5.5 years. With a drop in price of diesel fuel to $1 per liter, the payback period increases to about 7 years. These results show that standalone PV systems are technically feasible and economically viable in rural and peri-urban areas of South Sudan.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"55-68"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520213","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic Modeling of Stand-Alone Solar Photovoltaic Systems: A Case Scenario from South Sudan\",\"authors\":\"Aban Ayik;Nelson Ijumba;Charles Kabiri;Philippe Goffin\",\"doi\":\"10.23919/SAIEE.2024.10520213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"South Sudan is expansive and sparsely populated with over 80% of the population living in rural areas. The country has no national grid connecting its cities and towns, thus making rural areas “good candidates” for stand-alone renewable energy systems. This study was conducted to determine the technical feasibility and economic viability of a stand-alone photovoltaic (PV) system compared to a diesel generator. A technoeconomic model was developed to forecast the performance of the PV system. The system was initially designed using the IEEE Recommended Practice for Sizing of Stand-Alone Photovoltaic Systems (IEEE P1562-2021) and the IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic Systems (IEEE 1013-2019). The solar radiation data used for modeling were acquired from the Ineichen clear sky model and then transposed to the plane of array irradiation using pvlib python. The system optimization and sensitivity analysis was performed under various diesel fuel costs using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Results show that at a fuel price of $ 2 per liter, the levelized cost of electricity (LCOE) of the PV system is 64% lower than that of the diesel generator and that the system can earn 11% return on investment (ROI) and recover the investment in about 5.5 years. With a drop in price of diesel fuel to $1 per liter, the payback period increases to about 7 years. These results show that standalone PV systems are technically feasible and economically viable in rural and peri-urban areas of South Sudan.\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"115 2\",\"pages\":\"55-68\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520213\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520213/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10520213/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Techno-Economic Modeling of Stand-Alone Solar Photovoltaic Systems: A Case Scenario from South Sudan
South Sudan is expansive and sparsely populated with over 80% of the population living in rural areas. The country has no national grid connecting its cities and towns, thus making rural areas “good candidates” for stand-alone renewable energy systems. This study was conducted to determine the technical feasibility and economic viability of a stand-alone photovoltaic (PV) system compared to a diesel generator. A technoeconomic model was developed to forecast the performance of the PV system. The system was initially designed using the IEEE Recommended Practice for Sizing of Stand-Alone Photovoltaic Systems (IEEE P1562-2021) and the IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic Systems (IEEE 1013-2019). The solar radiation data used for modeling were acquired from the Ineichen clear sky model and then transposed to the plane of array irradiation using pvlib python. The system optimization and sensitivity analysis was performed under various diesel fuel costs using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Results show that at a fuel price of $ 2 per liter, the levelized cost of electricity (LCOE) of the PV system is 64% lower than that of the diesel generator and that the system can earn 11% return on investment (ROI) and recover the investment in about 5.5 years. With a drop in price of diesel fuel to $1 per liter, the payback period increases to about 7 years. These results show that standalone PV systems are technically feasible and economically viable in rural and peri-urban areas of South Sudan.