{"title":"论鲁棒性函数线性回归的梯度下降收敛性","authors":"Cheng Wang , Jun Fan","doi":"10.1016/j.jco.2024.101858","DOIUrl":null,"url":null,"abstract":"<div><p>Functional data analysis offers a set of statistical methods concerned with extracting insights from intrinsically infinite-dimensional data and has attracted considerable amount of attentions in the past few decades. In this paper, we study robust functional linear regression model with a scalar response and a functional predictor in the framework of reproducing kernel Hilbert spaces. A gradient descent algorithm with early stopping is introduced to solve the corresponding empirical risk minimization problem associated with robust loss functions. By appropriately selecting the early stopping rule and the scaling parameter of the robust losses, the convergence of the proposed algorithm is established when the response variable is bounded or satisfies a moment condition. Explicit learning rates with respect to both estimation and prediction error are provided in terms of regularity of the regression function and eigenvalue decay rate of the integral operator induced by the reproducing kernel and covariance function.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"84 ","pages":"Article 101858"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of gradient descent for robust functional linear regression\",\"authors\":\"Cheng Wang , Jun Fan\",\"doi\":\"10.1016/j.jco.2024.101858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Functional data analysis offers a set of statistical methods concerned with extracting insights from intrinsically infinite-dimensional data and has attracted considerable amount of attentions in the past few decades. In this paper, we study robust functional linear regression model with a scalar response and a functional predictor in the framework of reproducing kernel Hilbert spaces. A gradient descent algorithm with early stopping is introduced to solve the corresponding empirical risk minimization problem associated with robust loss functions. By appropriately selecting the early stopping rule and the scaling parameter of the robust losses, the convergence of the proposed algorithm is established when the response variable is bounded or satisfies a moment condition. Explicit learning rates with respect to both estimation and prediction error are provided in terms of regularity of the regression function and eigenvalue decay rate of the integral operator induced by the reproducing kernel and covariance function.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"84 \",\"pages\":\"Article 101858\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000359\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000359","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the convergence of gradient descent for robust functional linear regression
Functional data analysis offers a set of statistical methods concerned with extracting insights from intrinsically infinite-dimensional data and has attracted considerable amount of attentions in the past few decades. In this paper, we study robust functional linear regression model with a scalar response and a functional predictor in the framework of reproducing kernel Hilbert spaces. A gradient descent algorithm with early stopping is introduced to solve the corresponding empirical risk minimization problem associated with robust loss functions. By appropriately selecting the early stopping rule and the scaling parameter of the robust losses, the convergence of the proposed algorithm is established when the response variable is bounded or satisfies a moment condition. Explicit learning rates with respect to both estimation and prediction error are provided in terms of regularity of the regression function and eigenvalue decay rate of the integral operator induced by the reproducing kernel and covariance function.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.