Mari Honkanen , Henri Lukinmaa , Sami Kaappa , Suvi Santa-aho , Jaakko Kajan , Samuli Savolainen , Lucio Azzari , Lasse Laurson , Mikko Palosaari , Minnamari Vippola
{"title":"借助定制霍尔效应传感器支架,通过原位洛伦兹显微镜研究磁畴壁动力学","authors":"Mari Honkanen , Henri Lukinmaa , Sami Kaappa , Suvi Santa-aho , Jaakko Kajan , Samuli Savolainen , Lucio Azzari , Lasse Laurson , Mikko Palosaari , Minnamari Vippola","doi":"10.1016/j.ultramic.2024.113979","DOIUrl":null,"url":null,"abstract":"<div><p>We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by <em>in-situ</em> Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.</p><p>A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe<sub>3</sub>C) carbides in the ferrite matrix. Based on the <em>in-situ</em> Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the <em>in-situ</em> experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"262 ","pages":"Article 113979"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000585/pdfft?md5=83afb159438d4d13ebbbcee41c7d1bf4&pid=1-s2.0-S0304399124000585-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder\",\"authors\":\"Mari Honkanen , Henri Lukinmaa , Sami Kaappa , Suvi Santa-aho , Jaakko Kajan , Samuli Savolainen , Lucio Azzari , Lasse Laurson , Mikko Palosaari , Minnamari Vippola\",\"doi\":\"10.1016/j.ultramic.2024.113979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by <em>in-situ</em> Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.</p><p>A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe<sub>3</sub>C) carbides in the ferrite matrix. Based on the <em>in-situ</em> Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the <em>in-situ</em> experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"262 \",\"pages\":\"Article 113979\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000585/pdfft?md5=83afb159438d4d13ebbbcee41c7d1bf4&pid=1-s2.0-S0304399124000585-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000585\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder
We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.
A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe3C) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.