非ermitian 随机矩阵的韦格纳估计值和特征值条件数上限

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
László Erdős, Hong Chang Ji
{"title":"非ermitian 随机矩阵的韦格纳估计值和特征值条件数上限","authors":"László Erdős,&nbsp;Hong Chang Ji","doi":"10.1002/cpa.22201","DOIUrl":null,"url":null,"abstract":"<p>We consider <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>×</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$N\\times N$</annotation>\n </semantics></math> non-Hermitian random matrices of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>+</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$X+A$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a general deterministic matrix and <span></span><math>\n <semantics>\n <mrow>\n <msqrt>\n <mi>N</mi>\n </msqrt>\n <mi>X</mi>\n </mrow>\n <annotation>$\\sqrt {N}X$</annotation>\n </semantics></math> consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by <span></span><math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$N^{1+o(1)}$</annotation>\n </semantics></math> and (ii) that the expected condition number of any bulk eigenvalue is bounded by <span></span><math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$N^{1+o(1)}$</annotation>\n </semantics></math>; both results are optimal up to the factor <span></span><math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <annotation>$N^{o(1)}$</annotation>\n </semantics></math>. The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-dependence of the upper bounds by Banks et al. and Jain et al. Our main ingredient, a near-optimal lower tail estimate for the small singular values of <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>+</mo>\n <mi>A</mi>\n <mo>−</mo>\n <mi>z</mi>\n </mrow>\n <annotation>$X+A-z$</annotation>\n </semantics></math>, is of independent interest.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22201","citationCount":"0","resultStr":"{\"title\":\"Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices\",\"authors\":\"László Erdős,&nbsp;Hong Chang Ji\",\"doi\":\"10.1002/cpa.22201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>×</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$N\\\\times N$</annotation>\\n </semantics></math> non-Hermitian random matrices of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>+</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$X+A$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a general deterministic matrix and <span></span><math>\\n <semantics>\\n <mrow>\\n <msqrt>\\n <mi>N</mi>\\n </msqrt>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$\\\\sqrt {N}X$</annotation>\\n </semantics></math> consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by <span></span><math>\\n <semantics>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <annotation>$N^{1+o(1)}$</annotation>\\n </semantics></math> and (ii) that the expected condition number of any bulk eigenvalue is bounded by <span></span><math>\\n <semantics>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <annotation>$N^{1+o(1)}$</annotation>\\n </semantics></math>; both results are optimal up to the factor <span></span><math>\\n <semantics>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <annotation>$N^{o(1)}$</annotation>\\n </semantics></math>. The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-dependence of the upper bounds by Banks et al. and Jain et al. Our main ingredient, a near-optimal lower tail estimate for the small singular values of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>+</mo>\\n <mi>A</mi>\\n <mo>−</mo>\\n <mi>z</mi>\\n </mrow>\\n <annotation>$X+A-z$</annotation>\\n </semantics></math>, is of independent interest.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了非ermitian 随机矩阵的形式 ,其中 , 是一个一般的确定性矩阵,由均值为零、方差为单位且密度有界的独立条目组成。对于这个集合,我们证明了 (i) 韦格纳估计,即特征值的局部密度有界于;(ii) 任何主体特征值的预期条件数有界于 ;这两个结果都是最优的,直到系数 。后一个结果补充了 Cipolloni 等人最近得到的匹配下界,并改进了 Banks 等人和 Jain 等人的上界的-依赖性。我们的主要内容是对小奇异值 , 的近最优下尾估计,这与我们的兴趣无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices

We consider N × N $N\times N$ non-Hermitian random matrices of the form X + A $X+A$ , where A $A$ is a general deterministic matrix and N X $\sqrt {N}X$ consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by N 1 + o ( 1 ) $N^{1+o(1)}$ and (ii) that the expected condition number of any bulk eigenvalue is bounded by N 1 + o ( 1 ) $N^{1+o(1)}$ ; both results are optimal up to the factor N o ( 1 ) $N^{o(1)}$ . The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the N $N$ -dependence of the upper bounds by Banks et al. and Jain et al. Our main ingredient, a near-optimal lower tail estimate for the small singular values of X + A z $X+A-z$ , is of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信