Xia Yi, Jianqi Han, Xiaoyan Xu, Yilong Wang, Meng Zhang, Jie Zhu, Yucai He
{"title":"牛磺酸介导的基因转录和细胞膜渗透性增强了新分离出的紫云英藻生物乙醇和紫云英萘醌色素的联合生产","authors":"Xia Yi, Jianqi Han, Xiaoyan Xu, Yilong Wang, Meng Zhang, Jie Zhu, Yucai He","doi":"10.1186/s13068-024-02511-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine on co-production of bioethanol and <u>Mon</u>ascus <u>az</u>aphilone <u>p</u>igment<u>s</u> (MonAzPs) for a fungus.</p><h3>Results</h3><p>A newly isolated fungus of 98.92% identity with <i>Monascus purpureus</i> co-produced 23.43 g/L bioethanol and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 and 1.29 times, respectively. Taurine was consumed extremely small quantities for <i>M. purpureus</i> and its promotional effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis (serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-<i>O</i>-acyltransferase, deacetylase, NAD(P)H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane structure by microscopic imaging assays.</p><h3>Conclusions</h3><p>Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level and cell membrane permeability for <i>M. purpureus</i>. This work would offer an innovative, efficient and taurine-based co-production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02511-7","citationCount":"0","resultStr":"{\"title\":\"Taurine-mediated gene transcription and cell membrane permeability reinforced co-production of bioethanol and Monascus azaphilone pigments for a newly isolated Monascus purpureus\",\"authors\":\"Xia Yi, Jianqi Han, Xiaoyan Xu, Yilong Wang, Meng Zhang, Jie Zhu, Yucai He\",\"doi\":\"10.1186/s13068-024-02511-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine on co-production of bioethanol and <u>Mon</u>ascus <u>az</u>aphilone <u>p</u>igment<u>s</u> (MonAzPs) for a fungus.</p><h3>Results</h3><p>A newly isolated fungus of 98.92% identity with <i>Monascus purpureus</i> co-produced 23.43 g/L bioethanol and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 and 1.29 times, respectively. Taurine was consumed extremely small quantities for <i>M. purpureus</i> and its promotional effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis (serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-<i>O</i>-acyltransferase, deacetylase, NAD(P)H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane structure by microscopic imaging assays.</p><h3>Conclusions</h3><p>Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level and cell membrane permeability for <i>M. purpureus</i>. This work would offer an innovative, efficient and taurine-based co-production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02511-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02511-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02511-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Taurine-mediated gene transcription and cell membrane permeability reinforced co-production of bioethanol and Monascus azaphilone pigments for a newly isolated Monascus purpureus
Background
Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine on co-production of bioethanol and Monascus azaphilone pigments (MonAzPs) for a fungus.
Results
A newly isolated fungus of 98.92% identity with Monascus purpureus co-produced 23.43 g/L bioethanol and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 and 1.29 times, respectively. Taurine was consumed extremely small quantities for M. purpureus and its promotional effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis (serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-O-acyltransferase, deacetylase, NAD(P)H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane structure by microscopic imaging assays.
Conclusions
Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level and cell membrane permeability for M. purpureus. This work would offer an innovative, efficient and taurine-based co-production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis