通过增强型深拉格朗日网络对机器人机械手进行动态建模

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Shuangshuang Wu;Zhiming Li;Wenbai Chen;Fuchun Sun
{"title":"通过增强型深拉格朗日网络对机器人机械手进行动态建模","authors":"Shuangshuang Wu;Zhiming Li;Wenbai Chen;Fuchun Sun","doi":"10.26599/TST.2024.9010011","DOIUrl":null,"url":null,"abstract":"Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus. Recent physics-enforced networks, exemplified by Hamiltonian neural networks and Lagrangian neural networks, demonstrate proficiency in modeling ideal physical systems, but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation. In this paper, we present a novel augmented deep Lagrangian network, which seamlessly integrates a deep Lagrangian network with a standard deep network. This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics. The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties. The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 5","pages":"1604-1614"},"PeriodicalIF":6.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517980","citationCount":"0","resultStr":"{\"title\":\"Dynamic Modeling of Robotic Manipulator via an Augmented Deep Lagrangian Network\",\"authors\":\"Shuangshuang Wu;Zhiming Li;Wenbai Chen;Fuchun Sun\",\"doi\":\"10.26599/TST.2024.9010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus. Recent physics-enforced networks, exemplified by Hamiltonian neural networks and Lagrangian neural networks, demonstrate proficiency in modeling ideal physical systems, but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation. In this paper, we present a novel augmented deep Lagrangian network, which seamlessly integrates a deep Lagrangian network with a standard deep network. This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics. The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties. The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"29 5\",\"pages\":\"1604-1614\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517980\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517980/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10517980/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

直接从轨迹数据中学习机器人系统的精确动力学是当前的一个突出研究重点。以汉密尔顿神经网络和拉格朗日神经网络为代表的最新物理强化网络在理想物理系统建模方面表现出了卓越的能力,但在应用于具有不确定非守恒动态的系统时,却由于守恒定律基础的内在约束而面临限制。在本文中,我们提出了一种新颖的增强型深度拉格朗日网络,它将深度拉格朗日网络与标准深度网络无缝整合在一起。这种融合旨在有效地模拟不确定性,超越传统拉格朗日力学的局限性。我们将所提出的网络用于学习两个多度机械手在不确定情况下的反动力学模型,包括一个 6 度的 UR-5 机械手和一个 7 度的 SARCOS 机械手。实验结果清楚地表明,我们的方法具有卓越的建模精度和更高的物理可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Modeling of Robotic Manipulator via an Augmented Deep Lagrangian Network
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus. Recent physics-enforced networks, exemplified by Hamiltonian neural networks and Lagrangian neural networks, demonstrate proficiency in modeling ideal physical systems, but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation. In this paper, we present a novel augmented deep Lagrangian network, which seamlessly integrates a deep Lagrangian network with a standard deep network. This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics. The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties. The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信