针对住宅虚拟发电厂的 GRU 集成受限软行动者批判学习全分布式调度策略

IF 1.9 Q4 ENERGY & FUELS
Xiaoyun Deng , Yongdong Chen , Dongchuan Fan , Youbo Liu , Chao Ma
{"title":"针对住宅虚拟发电厂的 GRU 集成受限软行动者批判学习全分布式调度策略","authors":"Xiaoyun Deng ,&nbsp;Yongdong Chen ,&nbsp;Dongchuan Fan ,&nbsp;Youbo Liu ,&nbsp;Chao Ma","doi":"10.1016/j.gloei.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel residential virtual power plant (RVPP) scheduling method that leverages a gate recurrent unit (GRU)-integrated deep reinforcement learning (DRL) algorithm is proposed. In the proposed scheme, the GRU- integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets, lowering the electricity purchase costs and consumption risks for end-users. The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process (CMDP) into an unconstrained optimization problem, which guarantees that the constraints are strictly satisfied without determining the penalty coefficients. Furthermore, to enhance the scalability of the constrained soft actor-critic (CSAC)-based RVPP scheduling approach, a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources (RDER). Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs, balancing the supply and demand of the power grid, and ensuring customer comfort.</p></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 2","pages":"Pages 117-129"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096511724000227/pdf?md5=fee3a28af3e5d34ed52dd9cf0e3743dd&pid=1-s2.0-S2096511724000227-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant\",\"authors\":\"Xiaoyun Deng ,&nbsp;Yongdong Chen ,&nbsp;Dongchuan Fan ,&nbsp;Youbo Liu ,&nbsp;Chao Ma\",\"doi\":\"10.1016/j.gloei.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel residential virtual power plant (RVPP) scheduling method that leverages a gate recurrent unit (GRU)-integrated deep reinforcement learning (DRL) algorithm is proposed. In the proposed scheme, the GRU- integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets, lowering the electricity purchase costs and consumption risks for end-users. The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process (CMDP) into an unconstrained optimization problem, which guarantees that the constraints are strictly satisfied without determining the penalty coefficients. Furthermore, to enhance the scalability of the constrained soft actor-critic (CSAC)-based RVPP scheduling approach, a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources (RDER). Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs, balancing the supply and demand of the power grid, and ensuring customer comfort.</p></div>\",\"PeriodicalId\":36174,\"journal\":{\"name\":\"Global Energy Interconnection\",\"volume\":\"7 2\",\"pages\":\"Pages 117-129\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096511724000227/pdf?md5=fee3a28af3e5d34ed52dd9cf0e3743dd&pid=1-s2.0-S2096511724000227-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Energy Interconnection\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096511724000227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511724000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用门递归单元(GRU)集成深度强化学习(DRL)算法的新型住宅虚拟电厂(RVPP)调度方法。在所提出的方案中,GRU 集成 DRL 算法可引导 RVPP 有效参与日前市场和实时市场,从而降低终端用户的购电成本和用电风险。本文引入了拉格朗日松弛技术,将有约束马尔可夫决策过程(CMDP)转化为无约束优化问题,从而在不确定惩罚系数的情况下保证约束条件得到严格满足。此外,为了增强基于约束软行为批判(CSAC)的 RVPP 调度方法的可扩展性,设计了一种全分布式调度架构,以便在住宅分布式能源资源(RDER)中实现即插即用。在构建的 RVPP 情景中进行的案例研究验证了所提方法在提高 RDER 对电价的响应速度、平衡电网供需和确保客户舒适度方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant

In this study, a novel residential virtual power plant (RVPP) scheduling method that leverages a gate recurrent unit (GRU)-integrated deep reinforcement learning (DRL) algorithm is proposed. In the proposed scheme, the GRU- integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets, lowering the electricity purchase costs and consumption risks for end-users. The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process (CMDP) into an unconstrained optimization problem, which guarantees that the constraints are strictly satisfied without determining the penalty coefficients. Furthermore, to enhance the scalability of the constrained soft actor-critic (CSAC)-based RVPP scheduling approach, a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources (RDER). Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs, balancing the supply and demand of the power grid, and ensuring customer comfort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信