{"title":"拉格朗日、SO(3)-等式和混合方程","authors":"Aliakbar Daemi, Kenji Fukaya, Maksim Lipyanskiy","doi":"10.1007/s00039-024-00677-8","DOIUrl":null,"url":null,"abstract":"<p>The <i>mixed equation</i>, defined as a combination of the anti-self-duality equation in gauge theory and Cauchy–Riemann equation in symplectic geometry, is studied. In particular, regularity and Fredholm properties are established for the solutions of this equation, and it is shown that the moduli spaces of solutions to the mixed equation satisfy a compactness property which combines Uhlenbeck and Gormov compactness theorems. The results of this paper are used in a sequel to study the Atiyah–Floer conjecture.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangians, SO(3)-Instantons and Mixed Equation\",\"authors\":\"Aliakbar Daemi, Kenji Fukaya, Maksim Lipyanskiy\",\"doi\":\"10.1007/s00039-024-00677-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>mixed equation</i>, defined as a combination of the anti-self-duality equation in gauge theory and Cauchy–Riemann equation in symplectic geometry, is studied. In particular, regularity and Fredholm properties are established for the solutions of this equation, and it is shown that the moduli spaces of solutions to the mixed equation satisfy a compactness property which combines Uhlenbeck and Gormov compactness theorems. The results of this paper are used in a sequel to study the Atiyah–Floer conjecture.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00677-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00677-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The mixed equation, defined as a combination of the anti-self-duality equation in gauge theory and Cauchy–Riemann equation in symplectic geometry, is studied. In particular, regularity and Fredholm properties are established for the solutions of this equation, and it is shown that the moduli spaces of solutions to the mixed equation satisfy a compactness property which combines Uhlenbeck and Gormov compactness theorems. The results of this paper are used in a sequel to study the Atiyah–Floer conjecture.