通过图形实现最佳二进制差分隐私保护

Sahel Torkamani;Javad B. Ebrahimi;Parastoo Sadeghi;Rafael G. L. D’Oliveira;Muriel Médard
{"title":"通过图形实现最佳二进制差分隐私保护","authors":"Sahel Torkamani;Javad B. Ebrahimi;Parastoo Sadeghi;Rafael G. L. D’Oliveira;Muriel Médard","doi":"10.1109/JSAIT.2024.3384183","DOIUrl":null,"url":null,"abstract":"We present the notion of \n<italic>reasonable utility</i>\n for binary mechanisms, which applies to all utility functions in the literature. This notion induces a partial ordering on the performance of all binary differentially private (DP) mechanisms. DP mechanisms that are maximal elements of this ordering are optimal DP mechanisms for every reasonable utility. By looking at differential privacy as a randomized graph coloring, we characterize these optimal DP in terms of their behavior on a certain subset of the boundary datasets we call a boundary hitting set. In the process of establishing our results, we also introduce a useful notion that generalizes DP conditions for binary-valued queries, which we coin as suitable pairs. Suitable pairs abstract away the algebraic roles of \n<inline-formula> <tex-math>$\\varepsilon ,\\delta $ </tex-math></inline-formula>\n in the DP framework, making the derivations and understanding of our proofs simpler. Additionally, the notion of a suitable pair can potentially capture privacy conditions in frameworks other than DP and may be of independent interest.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"162-174"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Binary Differential Privacy via Graphs\",\"authors\":\"Sahel Torkamani;Javad B. Ebrahimi;Parastoo Sadeghi;Rafael G. L. D’Oliveira;Muriel Médard\",\"doi\":\"10.1109/JSAIT.2024.3384183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the notion of \\n<italic>reasonable utility</i>\\n for binary mechanisms, which applies to all utility functions in the literature. This notion induces a partial ordering on the performance of all binary differentially private (DP) mechanisms. DP mechanisms that are maximal elements of this ordering are optimal DP mechanisms for every reasonable utility. By looking at differential privacy as a randomized graph coloring, we characterize these optimal DP in terms of their behavior on a certain subset of the boundary datasets we call a boundary hitting set. In the process of establishing our results, we also introduce a useful notion that generalizes DP conditions for binary-valued queries, which we coin as suitable pairs. Suitable pairs abstract away the algebraic roles of \\n<inline-formula> <tex-math>$\\\\varepsilon ,\\\\delta $ </tex-math></inline-formula>\\n in the DP framework, making the derivations and understanding of our proofs simpler. Additionally, the notion of a suitable pair can potentially capture privacy conditions in frameworks other than DP and may be of independent interest.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"5 \",\"pages\":\"162-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497099/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497099/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了二元机制的合理效用概念,它适用于文献中的所有效用函数。这一概念为所有二元差异私有(DP)机制的性能诱导了一个部分排序。对于每个合理效用而言,作为该排序最大元素的 DP 机制都是最优 DP 机制。通过将差异隐私视为随机图着色,我们根据这些最优 DP 在边界数据集的某个子集上的行为来描述它们,我们称之为边界命中集。在建立结果的过程中,我们还引入了一个有用的概念,它概括了二值查询的 DP 条件,我们将其称为合适对。合适对抽象掉了 $\varepsilon ,\delta $ 在 DP 框架中的代数作用,从而使我们的证明的推导和理解更加简单。此外,合适对的概念有可能捕捉到DP框架之外的其他框架中的隐私条件,这可能会引起我们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Binary Differential Privacy via Graphs
We present the notion of reasonable utility for binary mechanisms, which applies to all utility functions in the literature. This notion induces a partial ordering on the performance of all binary differentially private (DP) mechanisms. DP mechanisms that are maximal elements of this ordering are optimal DP mechanisms for every reasonable utility. By looking at differential privacy as a randomized graph coloring, we characterize these optimal DP in terms of their behavior on a certain subset of the boundary datasets we call a boundary hitting set. In the process of establishing our results, we also introduce a useful notion that generalizes DP conditions for binary-valued queries, which we coin as suitable pairs. Suitable pairs abstract away the algebraic roles of $\varepsilon ,\delta $ in the DP framework, making the derivations and understanding of our proofs simpler. Additionally, the notion of a suitable pair can potentially capture privacy conditions in frameworks other than DP and may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信