{"title":"I❤MESH:网格处理 DSL","authors":"Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, Yotam Gingold","doi":"10.1145/3662181","DOIUrl":null,"url":null,"abstract":"<p>Mesh processing algorithms are often communicated via concise mathematical notation (e.g., summation over mesh neighborhoods). However, conversion of notation into working code remains a time consuming and error-prone process which requires arcane knowledge of low-level data structures and libraries—impeding rapid exploration of high-level algorithms. We address this problem by introducing a domain-specific language (DSL) for mesh processing called I❤MESH, which resembles notation commonly used in visual and geometric computing, and automates the process of converting notation into code. The centerpiece of our language is a flexible notation for specifying and manipulating neighborhoods of a cell complex, internally represented via standard operations on sparse boundary matrices. This layered design enables natural expression of algorithms while minimizing demands on a code generation back-end. In particular, by integrating I❤MESH with the linear algebra features of the I❤LA DSL, and adding support for automatic differentiation, we can rapidly implement a rich variety of algorithms on point clouds, surface meshes, and volume meshes.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I❤MESH: A DSL for Mesh Processing\",\"authors\":\"Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, Yotam Gingold\",\"doi\":\"10.1145/3662181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mesh processing algorithms are often communicated via concise mathematical notation (e.g., summation over mesh neighborhoods). However, conversion of notation into working code remains a time consuming and error-prone process which requires arcane knowledge of low-level data structures and libraries—impeding rapid exploration of high-level algorithms. We address this problem by introducing a domain-specific language (DSL) for mesh processing called I❤MESH, which resembles notation commonly used in visual and geometric computing, and automates the process of converting notation into code. The centerpiece of our language is a flexible notation for specifying and manipulating neighborhoods of a cell complex, internally represented via standard operations on sparse boundary matrices. This layered design enables natural expression of algorithms while minimizing demands on a code generation back-end. In particular, by integrating I❤MESH with the linear algebra features of the I❤LA DSL, and adding support for automatic differentiation, we can rapidly implement a rich variety of algorithms on point clouds, surface meshes, and volume meshes.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3662181\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662181","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Mesh processing algorithms are often communicated via concise mathematical notation (e.g., summation over mesh neighborhoods). However, conversion of notation into working code remains a time consuming and error-prone process which requires arcane knowledge of low-level data structures and libraries—impeding rapid exploration of high-level algorithms. We address this problem by introducing a domain-specific language (DSL) for mesh processing called I❤MESH, which resembles notation commonly used in visual and geometric computing, and automates the process of converting notation into code. The centerpiece of our language is a flexible notation for specifying and manipulating neighborhoods of a cell complex, internally represented via standard operations on sparse boundary matrices. This layered design enables natural expression of algorithms while minimizing demands on a code generation back-end. In particular, by integrating I❤MESH with the linear algebra features of the I❤LA DSL, and adding support for automatic differentiation, we can rapidly implement a rich variety of algorithms on point clouds, surface meshes, and volume meshes.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.