Ludovico Lami, Julen S. Pedernales, Martin B. Plenio
{"title":"测试无纠缠引力的量子性","authors":"Ludovico Lami, Julen S. Pedernales, Martin B. Plenio","doi":"10.1103/physrevx.14.021022","DOIUrl":null,"url":null,"abstract":"Given a unitary evolution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> on a multipartite quantum system and an ensemble of initial states, how well can <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity—what we call an “LOCC inequality.” We then apply our findings to the fundamental setting where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the nonclassicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialized in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalized states of motion nor the detection of entanglement, which is never created at any point in the process.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Quantumness of Gravity without Entanglement\",\"authors\":\"Ludovico Lami, Julen S. Pedernales, Martin B. Plenio\",\"doi\":\"10.1103/physrevx.14.021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a unitary evolution <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> on a multipartite quantum system and an ensemble of initial states, how well can <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity—what we call an “LOCC inequality.” We then apply our findings to the fundamental setting where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the nonclassicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialized in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalized states of motion nor the detection of entanglement, which is never created at any point in the process.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021022\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021022","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Testing the Quantumness of Gravity without Entanglement
Given a unitary evolution on a multipartite quantum system and an ensemble of initial states, how well can be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity—what we call an “LOCC inequality.” We then apply our findings to the fundamental setting where implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the nonclassicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialized in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalized states of motion nor the detection of entanglement, which is never created at any point in the process.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.