{"title":"全面回顾用于疾病诊断的可解释人工智能","authors":"Al Amin Biswas","doi":"10.1016/j.array.2024.100345","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, artificial intelligence (AI) has been utilized in several domains of the healthcare sector. Despite its effectiveness in healthcare settings, its massive adoption remains limited due to the transparency issue, which is considered a significant obstacle. To achieve the trust of end users, it is necessary to explain the AI models' output. Therefore, explainable AI (XAI) has become apparent as a potential solution by providing transparent explanations of the AI models' output. In this review paper, the primary aim is to review articles that are mainly related to machine learning (ML) or deep learning (DL) based human disease diagnoses, and the model's decision-making process is explained by XAI techniques. To do that, two journal databases (Scopus and the IEEE Xplore Digital Library) were thoroughly searched using a few predetermined relevant keywords. The PRISMA guidelines have been followed to determine the papers for the final analysis, where studies that did not meet the requirements were eliminated. Finally, 90 Q1 journal articles are selected for in-depth analysis, covering several XAI techniques. Then, the summarization of the several findings has been presented, and appropriate responses to the proposed research questions have been outlined. In addition, several challenges related to XAI in the case of human disease diagnosis and future research directions in this sector are presented.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"22 ","pages":"Article 100345"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000110/pdfft?md5=e1abc0e28d1ca274ca3562e4e862960b&pid=1-s2.0-S2590005624000110-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of explainable AI for disease diagnosis\",\"authors\":\"Al Amin Biswas\",\"doi\":\"10.1016/j.array.2024.100345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, artificial intelligence (AI) has been utilized in several domains of the healthcare sector. Despite its effectiveness in healthcare settings, its massive adoption remains limited due to the transparency issue, which is considered a significant obstacle. To achieve the trust of end users, it is necessary to explain the AI models' output. Therefore, explainable AI (XAI) has become apparent as a potential solution by providing transparent explanations of the AI models' output. In this review paper, the primary aim is to review articles that are mainly related to machine learning (ML) or deep learning (DL) based human disease diagnoses, and the model's decision-making process is explained by XAI techniques. To do that, two journal databases (Scopus and the IEEE Xplore Digital Library) were thoroughly searched using a few predetermined relevant keywords. The PRISMA guidelines have been followed to determine the papers for the final analysis, where studies that did not meet the requirements were eliminated. Finally, 90 Q1 journal articles are selected for in-depth analysis, covering several XAI techniques. Then, the summarization of the several findings has been presented, and appropriate responses to the proposed research questions have been outlined. In addition, several challenges related to XAI in the case of human disease diagnosis and future research directions in this sector are presented.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"22 \",\"pages\":\"Article 100345\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000110/pdfft?md5=e1abc0e28d1ca274ca3562e4e862960b&pid=1-s2.0-S2590005624000110-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A comprehensive review of explainable AI for disease diagnosis
Nowadays, artificial intelligence (AI) has been utilized in several domains of the healthcare sector. Despite its effectiveness in healthcare settings, its massive adoption remains limited due to the transparency issue, which is considered a significant obstacle. To achieve the trust of end users, it is necessary to explain the AI models' output. Therefore, explainable AI (XAI) has become apparent as a potential solution by providing transparent explanations of the AI models' output. In this review paper, the primary aim is to review articles that are mainly related to machine learning (ML) or deep learning (DL) based human disease diagnoses, and the model's decision-making process is explained by XAI techniques. To do that, two journal databases (Scopus and the IEEE Xplore Digital Library) were thoroughly searched using a few predetermined relevant keywords. The PRISMA guidelines have been followed to determine the papers for the final analysis, where studies that did not meet the requirements were eliminated. Finally, 90 Q1 journal articles are selected for in-depth analysis, covering several XAI techniques. Then, the summarization of the several findings has been presented, and appropriate responses to the proposed research questions have been outlined. In addition, several challenges related to XAI in the case of human disease diagnosis and future research directions in this sector are presented.