论图上流行病学模型的连续极限:收敛和近似结果

Blanca Ayuso de Dios, Simone Dovetta, Laura V. Spinolo
{"title":"论图上流行病学模型的连续极限:收敛和近似结果","authors":"Blanca Ayuso de Dios, Simone Dovetta, Laura V. Spinolo","doi":"10.1142/s0218202524500271","DOIUrl":null,"url":null,"abstract":"<p>We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of <i>graphons</i> we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the continuum limit of epidemiological models on graphs: convergence and approximation results\",\"authors\":\"Blanca Ayuso de Dios, Simone Dovetta, Laura V. Spinolo\",\"doi\":\"10.1142/s0218202524500271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of <i>graphons</i> we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重点研究定义在图上的流行病学模型(典型的 SIR 系统),并研究随着图中顶点数量的发散,解的渐近行为。依靠图子理论,我们提供了极限的特征并建立了收敛结果。我们还提供了确定性离散和随机离散的近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the continuum limit of epidemiological models on graphs: convergence and approximation results

We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信