无性种群中恒定变异的选择限制

IF 1.2 4区 生物学 Q4 ECOLOGY
Nick Barton , Himani Sachdeva
{"title":"无性种群中恒定变异的选择限制","authors":"Nick Barton ,&nbsp;Himani Sachdeva","doi":"10.1016/j.tpb.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider how a population of <span><math><mi>N</mi></math></span> haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></math></span>, which are drawn from a distribution <span><math><mi>ψ</mi></math></span>; the fitness of individual <span><math><mi>i</mi></math></span> is proportional to <span><math><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></math></span>. For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and show that for large <span><math><mi>N</mi></math></span>, there is a scaling limit which depends on a single parameter <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>. When selection is weak relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≪</mo><mn>1</mn></mrow></math></span>), the variance decreases exponentially at rate <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>, and the expected ultimate gain in log fitness (scaled by <span><math><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></math></span>), is just <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>, which is the same as Robertson’s (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≫</mo><mn>1</mn></mrow></math></span>), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time <span><math><mrow><mi>t</mi><mo>∼</mo><mn>1</mn><mo>/</mo><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span> of an allele with value <span><math><mi>z</mi></math></span> is <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, with mean <span><math><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></math></span>, the winning allele is the fittest of <span><math><mrow><mi>N</mi><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span> survivors drawn from a distribution <span><math><mrow><mi>ψ</mi><mi>P</mi><mo>/</mo><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span>. The expected ultimate change is <span><math><mrow><mo>∼</mo><msqrt><mrow><mn>2</mn><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>15</mn><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>)</mo></mrow></mrow></msqrt></mrow></math></span> for a Gaussian distribution, and <span><math><mrow><mo>∼</mo><mspace></mspace><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mfenced><mrow><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>−</mo><mo>log</mo><mfenced><mrow><mo>−</mo><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced></mrow></mfenced></mrow></mfenced></mrow></math></span> for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as <span><math><mrow><mo>∼</mo><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"157 ","pages":"Pages 129-137"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000340/pdfft?md5=11e7dda9fdc312e774cd76068c76d9e8&pid=1-s2.0-S0040580924000340-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Limits to selection on standing variation in an asexual population\",\"authors\":\"Nick Barton ,&nbsp;Himani Sachdeva\",\"doi\":\"10.1016/j.tpb.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider how a population of <span><math><mi>N</mi></math></span> haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></math></span>, which are drawn from a distribution <span><math><mi>ψ</mi></math></span>; the fitness of individual <span><math><mi>i</mi></math></span> is proportional to <span><math><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></math></span>. For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and show that for large <span><math><mi>N</mi></math></span>, there is a scaling limit which depends on a single parameter <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>. When selection is weak relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≪</mo><mn>1</mn></mrow></math></span>), the variance decreases exponentially at rate <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>, and the expected ultimate gain in log fitness (scaled by <span><math><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></math></span>), is just <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>, which is the same as Robertson’s (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≫</mo><mn>1</mn></mrow></math></span>), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time <span><math><mrow><mi>t</mi><mo>∼</mo><mn>1</mn><mo>/</mo><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span> of an allele with value <span><math><mi>z</mi></math></span> is <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, with mean <span><math><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></math></span>, the winning allele is the fittest of <span><math><mrow><mi>N</mi><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span> survivors drawn from a distribution <span><math><mrow><mi>ψ</mi><mi>P</mi><mo>/</mo><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span>. The expected ultimate change is <span><math><mrow><mo>∼</mo><msqrt><mrow><mn>2</mn><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>15</mn><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>)</mo></mrow></mrow></msqrt></mrow></math></span> for a Gaussian distribution, and <span><math><mrow><mo>∼</mo><mspace></mspace><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mfenced><mrow><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>−</mo><mo>log</mo><mfenced><mrow><mo>−</mo><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced></mrow></mfenced></mrow></mfenced></mrow></math></span> for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as <span><math><mrow><mo>∼</mo><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"157 \",\"pages\":\"Pages 129-137\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000340/pdfft?md5=11e7dda9fdc312e774cd76068c76d9e8&pid=1-s2.0-S0040580924000340-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000340\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个由 N 个单倍体个体组成的种群如何对常态变异的定向选择做出反应,而没有来自重组或突变的新变异。个体的性状值 z1、......、zN 取自分布 ψ;个体 i 的适应度与 ezi 成正比。为了说明问题,我们考虑了拉普拉斯和高斯分布,它们的参数只有方差 V0。当选择相对于漂移较弱时(NV0≪1≫),方差以 1/N 的速率呈指数下降,对数适合度的预期最终增益(按 V0 缩放)仅为 NV0,这与罗伯逊(1960 年)对有性种群的预测相同。与此相反,当选择相对于漂移(NV0≫1)较强时,等位基因的最终增益可以通过近似分支过程来求得,在这个过程中,每个等位基因都与种群平均值独立竞争,最适合建立的等位基因一定会固定下来。那么,如果值为 z 的等位基因存活到时间 t∼1/V0 的概率为 P(z),均值为 P¯,则获胜的等位基因是从分布 ψP/P¯ 中抽取的 NP¯ 存活者中最合适的一个。对于高斯分布,预期最终变化为 ∼2log(1.15NV0);对于拉普拉斯分布,预期最终变化为 ∼-12log0.36NV0-log-log0.36NV0。这种方法还能预测过程的变异性及其动态变化;我们发现,在强选择机制下,预期遗传变异在较大时间内会随着 ∼t-3 的减小而减小。我们讨论了这些结果如何与沿线性染色体分布的常态变异的选择有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limits to selection on standing variation in an asexual population

We consider how a population of N haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values z1,,zN, which are drawn from a distribution ψ; the fitness of individual i is proportional to ezi. For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance V0, and show that for large N, there is a scaling limit which depends on a single parameter NV0. When selection is weak relative to drift (NV01), the variance decreases exponentially at rate 1/N, and the expected ultimate gain in log fitness (scaled by V0), is just NV0, which is the same as Robertson’s (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (NV01), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time t1/V0 of an allele with value z is P(z), with mean P¯, the winning allele is the fittest of NP¯ survivors drawn from a distribution ψP/P¯. The expected ultimate change is 2log(1.15NV0) for a Gaussian distribution, and 12log0.36NV0loglog0.36NV0 for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as t3 at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信