慢速驱动快速振荡器的确定性和随机替代模型

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Marcel Oliver, Marc A. Tiofack Kenfack
{"title":"慢速驱动快速振荡器的确定性和随机替代模型","authors":"Marcel Oliver, Marc A. Tiofack Kenfack","doi":"10.1137/23m1602176","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1090-1107, June 2024. <br/> Abstract.It has long been known that the excitation of fast motion in certain two-scale dynamical systems is linked to the singularity structure in complex time of the slow variables. We demonstrate that, in the context of a fast harmonic oscillator forced by one component of the Lorenz 1963 model, this principle can be used to construct time-discrete surrogate models by numerically extracting approximate locations and residues of complex poles via adaptive Antoulas–Anderson (AAA) rational interpolation and feeding this information into the known “connection formula” to compute the resulting fast amplitude. Despite small but nonnegligible local errors, the surrogate model maintains excellent accuracy over very long times. In addition, we observe that the long-time behavior of fast energy offers a continuous-time analogue of Gottwald and Melbourne’s 2004 “0–1 test for chaos”; that is, the asymptotic growth rate of the energy in the oscillator can discern whether or not the forcing function is chaotic.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"80 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic and Stochastic Surrogate Models for a Slowly Driven Fast Oscillator\",\"authors\":\"Marcel Oliver, Marc A. Tiofack Kenfack\",\"doi\":\"10.1137/23m1602176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1090-1107, June 2024. <br/> Abstract.It has long been known that the excitation of fast motion in certain two-scale dynamical systems is linked to the singularity structure in complex time of the slow variables. We demonstrate that, in the context of a fast harmonic oscillator forced by one component of the Lorenz 1963 model, this principle can be used to construct time-discrete surrogate models by numerically extracting approximate locations and residues of complex poles via adaptive Antoulas–Anderson (AAA) rational interpolation and feeding this information into the known “connection formula” to compute the resulting fast amplitude. Despite small but nonnegligible local errors, the surrogate model maintains excellent accuracy over very long times. In addition, we observe that the long-time behavior of fast energy offers a continuous-time analogue of Gottwald and Melbourne’s 2004 “0–1 test for chaos”; that is, the asymptotic growth rate of the energy in the oscillator can discern whether or not the forcing function is chaotic.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1602176\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1602176","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 2 期第 1090-1107 页,2024 年 6 月。 摘要.众所周知,某些双尺度动力系统中快速运动的激发与慢变量在复时间内的奇异结构有关。我们证明,在由洛伦兹 1963 模型的一个分量强迫的快速谐振子中,可以利用这一原理构建时间离散的代用模型,方法是通过自适应安图拉斯-安德森(AAA)有理插值法数值提取复极点的近似位置和残差,并将这些信息输入已知的 "连接公式 "以计算所得到的快速振幅。尽管存在微小但不可忽略的局部误差,代用模型仍能在很长时间内保持极高的精度。此外,我们还观察到,快速能量的长期行为提供了 Gottwald 和 Melbourne 2004 年 "0-1 混沌测试 "的连续时间类比;也就是说,振荡器中能量的渐近增长率可以判别强迫函数是否是混沌的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic and Stochastic Surrogate Models for a Slowly Driven Fast Oscillator
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1090-1107, June 2024.
Abstract.It has long been known that the excitation of fast motion in certain two-scale dynamical systems is linked to the singularity structure in complex time of the slow variables. We demonstrate that, in the context of a fast harmonic oscillator forced by one component of the Lorenz 1963 model, this principle can be used to construct time-discrete surrogate models by numerically extracting approximate locations and residues of complex poles via adaptive Antoulas–Anderson (AAA) rational interpolation and feeding this information into the known “connection formula” to compute the resulting fast amplitude. Despite small but nonnegligible local errors, the surrogate model maintains excellent accuracy over very long times. In addition, we observe that the long-time behavior of fast energy offers a continuous-time analogue of Gottwald and Melbourne’s 2004 “0–1 test for chaos”; that is, the asymptotic growth rate of the energy in the oscillator can discern whether or not the forcing function is chaotic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信