{"title":"利用印度尼西亚西爪哇苏邦地区的哨兵-2 光学图像,在雨季和旱季通过光谱-时态数据融合进行稻田分类","authors":"Kustiyo Kustiyo, Rokhmatuloh Rokhmatuloh, Adhi Harmoko Saputro, Dony Kushardono","doi":"10.1007/s10333-024-00972-y","DOIUrl":null,"url":null,"abstract":"<p>The most accurate method for rice fields mapping involves a phenological approach using optical remote sensing and a multisource data integration approach. However, these approaches do not consider the two rice growing periods in tropical regions, which are the rainy and dry seasons. During the rainy season, the optical remote sensing data are affected by clouds and haze. On the other hand, during the dry season, rainfed rice fields are not planted with rice. Therefore, this study proposed a new scheme for rice fields classification in the tropical regions using data fusion between different seasonal periods. Three data fusion scenarios based on reflectance fusion, temporal feature fusion, and information fusion from remote sensing data during the rainy and dry seasons were analyzed. The results showed that the accuracy of rice fields classification increased by using the proposed scheme, rather than a single period. The best fusion scenario was the information fusion strategy with the highest increase in precision accuracy, from 92.72% in reflectance fusion and 93.17% in temporal feature fusion to 94.99%. This strategy distinguished the rice fields from the fish pond and other seasonal crops such as sugar plantations.</p>","PeriodicalId":56101,"journal":{"name":"Paddy and Water Environment","volume":"61 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rice fields classification through spectral-temporal data fusion during the rainy and dry seasons using Sentinel-2 optical images in Subang Regency, West Java, Indonesia\",\"authors\":\"Kustiyo Kustiyo, Rokhmatuloh Rokhmatuloh, Adhi Harmoko Saputro, Dony Kushardono\",\"doi\":\"10.1007/s10333-024-00972-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most accurate method for rice fields mapping involves a phenological approach using optical remote sensing and a multisource data integration approach. However, these approaches do not consider the two rice growing periods in tropical regions, which are the rainy and dry seasons. During the rainy season, the optical remote sensing data are affected by clouds and haze. On the other hand, during the dry season, rainfed rice fields are not planted with rice. Therefore, this study proposed a new scheme for rice fields classification in the tropical regions using data fusion between different seasonal periods. Three data fusion scenarios based on reflectance fusion, temporal feature fusion, and information fusion from remote sensing data during the rainy and dry seasons were analyzed. The results showed that the accuracy of rice fields classification increased by using the proposed scheme, rather than a single period. The best fusion scenario was the information fusion strategy with the highest increase in precision accuracy, from 92.72% in reflectance fusion and 93.17% in temporal feature fusion to 94.99%. This strategy distinguished the rice fields from the fish pond and other seasonal crops such as sugar plantations.</p>\",\"PeriodicalId\":56101,\"journal\":{\"name\":\"Paddy and Water Environment\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paddy and Water Environment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10333-024-00972-y\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paddy and Water Environment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10333-024-00972-y","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Rice fields classification through spectral-temporal data fusion during the rainy and dry seasons using Sentinel-2 optical images in Subang Regency, West Java, Indonesia
The most accurate method for rice fields mapping involves a phenological approach using optical remote sensing and a multisource data integration approach. However, these approaches do not consider the two rice growing periods in tropical regions, which are the rainy and dry seasons. During the rainy season, the optical remote sensing data are affected by clouds and haze. On the other hand, during the dry season, rainfed rice fields are not planted with rice. Therefore, this study proposed a new scheme for rice fields classification in the tropical regions using data fusion between different seasonal periods. Three data fusion scenarios based on reflectance fusion, temporal feature fusion, and information fusion from remote sensing data during the rainy and dry seasons were analyzed. The results showed that the accuracy of rice fields classification increased by using the proposed scheme, rather than a single period. The best fusion scenario was the information fusion strategy with the highest increase in precision accuracy, from 92.72% in reflectance fusion and 93.17% in temporal feature fusion to 94.99%. This strategy distinguished the rice fields from the fish pond and other seasonal crops such as sugar plantations.
期刊介绍:
The aim of Paddy and Water Environment is to advance the science and technology of water and environment related disciplines in paddy-farming. The scope includes the paddy-farming related scientific and technological aspects in agricultural engineering such as irrigation and drainage, soil and water conservation, land and water resources management, irrigation facilities and disaster management, paddy multi-functionality, agricultural policy, regional planning, bioenvironmental systems, and ecological conservation and restoration in paddy farming regions.