Maryam Ayaz, Hilal Khan, Hessa A. Alsalmah, Muhammad Yunas, Ghulam Murtaza
{"title":"ALi2B(A = 铜、银;B = Ge、锡、铅)化合物的结构、能带剖面和光学反射率研究","authors":"Maryam Ayaz, Hilal Khan, Hessa A. Alsalmah, Muhammad Yunas, Ghulam Murtaza","doi":"10.1515/zna-2023-0268","DOIUrl":null,"url":null,"abstract":"The subject of given project is to highlight the basic elastic, electronic and optical reflectivity of ALi<jats:sub>2</jats:sub>B (A = Cu, Ag; B = Ge, Sn, Pb). For the calculation of these properties, we used the full potential linearized augmented plane wave (FP-LAPW) procedures carry through Wien2k package. Specifically, the Perdew, Burke and Ernzerhof’s generalized gradient approximation (PBE-GGA) and Wu and Cohen generalized gradient approximation (WC-GGA) have been used. The obtained results fit well with existing experimental data. Different elastic parameters, such as constant of elasticity, elastic moduli, Poisson’s ratio, anisotropy factor and Cauchy pressure, are calculated for the first time for the compounds. The elastic properties clearly summarized the compound’s elastically stability and brittleness in both zinc blend phase. The band structure results for ALi<jats:sub>2</jats:sub>B shows that the compounds are metallic having overlapping bands across the electron chemical potential. The valance band highest energy state is composed from combination of Cu-<jats:italic>d</jats:italic> and Sn-<jats:italic>p</jats:italic> state, disclosed through these compound’s total (DOS) plots, whereas the conduction band primarily constitution is from Li-<jats:italic>p</jats:italic>, Sn-<jats:italic>s</jats:italic> Cu-<jats:italic>s</jats:italic> and Sn-<jats:italic>p</jats:italic> states. The intraband transitions play vital rule in the description of the optical reflectivity of the ALi<jats:sub>2</jats:sub>B compounds.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, band profiles and optical reflectivity studies of ALi2B (A = Cu, Ag; B = Ge, Sn, Pb) compounds\",\"authors\":\"Maryam Ayaz, Hilal Khan, Hessa A. Alsalmah, Muhammad Yunas, Ghulam Murtaza\",\"doi\":\"10.1515/zna-2023-0268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of given project is to highlight the basic elastic, electronic and optical reflectivity of ALi<jats:sub>2</jats:sub>B (A = Cu, Ag; B = Ge, Sn, Pb). For the calculation of these properties, we used the full potential linearized augmented plane wave (FP-LAPW) procedures carry through Wien2k package. Specifically, the Perdew, Burke and Ernzerhof’s generalized gradient approximation (PBE-GGA) and Wu and Cohen generalized gradient approximation (WC-GGA) have been used. The obtained results fit well with existing experimental data. Different elastic parameters, such as constant of elasticity, elastic moduli, Poisson’s ratio, anisotropy factor and Cauchy pressure, are calculated for the first time for the compounds. The elastic properties clearly summarized the compound’s elastically stability and brittleness in both zinc blend phase. The band structure results for ALi<jats:sub>2</jats:sub>B shows that the compounds are metallic having overlapping bands across the electron chemical potential. The valance band highest energy state is composed from combination of Cu-<jats:italic>d</jats:italic> and Sn-<jats:italic>p</jats:italic> state, disclosed through these compound’s total (DOS) plots, whereas the conduction band primarily constitution is from Li-<jats:italic>p</jats:italic>, Sn-<jats:italic>s</jats:italic> Cu-<jats:italic>s</jats:italic> and Sn-<jats:italic>p</jats:italic> states. The intraband transitions play vital rule in the description of the optical reflectivity of the ALi<jats:sub>2</jats:sub>B compounds.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural, band profiles and optical reflectivity studies of ALi2B (A = Cu, Ag; B = Ge, Sn, Pb) compounds
The subject of given project is to highlight the basic elastic, electronic and optical reflectivity of ALi2B (A = Cu, Ag; B = Ge, Sn, Pb). For the calculation of these properties, we used the full potential linearized augmented plane wave (FP-LAPW) procedures carry through Wien2k package. Specifically, the Perdew, Burke and Ernzerhof’s generalized gradient approximation (PBE-GGA) and Wu and Cohen generalized gradient approximation (WC-GGA) have been used. The obtained results fit well with existing experimental data. Different elastic parameters, such as constant of elasticity, elastic moduli, Poisson’s ratio, anisotropy factor and Cauchy pressure, are calculated for the first time for the compounds. The elastic properties clearly summarized the compound’s elastically stability and brittleness in both zinc blend phase. The band structure results for ALi2B shows that the compounds are metallic having overlapping bands across the electron chemical potential. The valance band highest energy state is composed from combination of Cu-d and Sn-p state, disclosed through these compound’s total (DOS) plots, whereas the conduction band primarily constitution is from Li-p, Sn-s Cu-s and Sn-p states. The intraband transitions play vital rule in the description of the optical reflectivity of the ALi2B compounds.