{"title":"基于二阶 NARX-Laguerre 模型的非线性模型预测控制用于双转子系统控制","authors":"Imen Ben Abdelwahed, Kais Bouzrara","doi":"10.1007/s40998-024-00725-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present an innovative strategy for nonlinear model predictive control by employing a discrete-time NARX-Laguerre model. This latter model is crafted through the expansion of discrete-time NARX model parameters using a set of five independent Laguerre bases. A notable benefit of this approach is a substantial reduction in the number of parameters compared to the classical NARX model. However, the realization of this reduction depends on the careful selection of optimal Laguerre poles that define these bases. The parameters of the NARX-Laguerre model are determined through a recursive methodology. This resulting model is subsequently applied in the implementation of nonlinear model predictive control. To formulate the optimization problem, we incorporate a performance criterion that takes into account both process input and output constraints. We assess the effectiveness of this novel approach to nonlinear model predictive control through experimentation on the Twin Rotor System.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"129 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Model Predictive Control Based on Second-Order NARX-Laguerre Model for Twin Rotor System Control\",\"authors\":\"Imen Ben Abdelwahed, Kais Bouzrara\",\"doi\":\"10.1007/s40998-024-00725-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present an innovative strategy for nonlinear model predictive control by employing a discrete-time NARX-Laguerre model. This latter model is crafted through the expansion of discrete-time NARX model parameters using a set of five independent Laguerre bases. A notable benefit of this approach is a substantial reduction in the number of parameters compared to the classical NARX model. However, the realization of this reduction depends on the careful selection of optimal Laguerre poles that define these bases. The parameters of the NARX-Laguerre model are determined through a recursive methodology. This resulting model is subsequently applied in the implementation of nonlinear model predictive control. To formulate the optimization problem, we incorporate a performance criterion that takes into account both process input and output constraints. We assess the effectiveness of this novel approach to nonlinear model predictive control through experimentation on the Twin Rotor System.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00725-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00725-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nonlinear Model Predictive Control Based on Second-Order NARX-Laguerre Model for Twin Rotor System Control
In this paper, we present an innovative strategy for nonlinear model predictive control by employing a discrete-time NARX-Laguerre model. This latter model is crafted through the expansion of discrete-time NARX model parameters using a set of five independent Laguerre bases. A notable benefit of this approach is a substantial reduction in the number of parameters compared to the classical NARX model. However, the realization of this reduction depends on the careful selection of optimal Laguerre poles that define these bases. The parameters of the NARX-Laguerre model are determined through a recursive methodology. This resulting model is subsequently applied in the implementation of nonlinear model predictive control. To formulate the optimization problem, we incorporate a performance criterion that takes into account both process input and output constraints. We assess the effectiveness of this novel approach to nonlinear model predictive control through experimentation on the Twin Rotor System.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.