$$C^+(X)$$上的z共轭和拓扑结构

IF 0.8 3区 数学 Q2 MATHEMATICS
Pronay Biswas, Sagarmoy Bag, Sujit Kumar Sardar
{"title":"$$C^+(X)$$上的z共轭和拓扑结构","authors":"Pronay Biswas, Sagarmoy Bag, Sujit Kumar Sardar","doi":"10.1007/s11117-024-01049-0","DOIUrl":null,"url":null,"abstract":"<p>For a Tychonoff space <i>X</i>, <span>\\(C^+(X)\\)</span> denotes the non-negative real-valued continuous functions on <i>X</i>. We obtain a correlation between <i>z</i>-congruences on the ring <i>C</i>(<i>X</i>) and <i>z</i>-congruences on the semiring <span>\\(C^+(X)\\)</span>. We give a new characterization of P-spaces via <i>z</i>-congruences on <span>\\(C^+(X)\\)</span>. The <i>z</i>-congruences on <span>\\(C^+(X)\\)</span> are shown to have an algebraic nature like <i>z</i>-ideals. We study some topological properties of <span>\\(C^+(X)\\)</span> under <i>u</i>-topology and <i>m</i>-topology. It is shown that a proper ideal of <span>\\(C^+(X)\\)</span> is closed under <i>m</i>-topology if and only if it is the intersection of maximal ideals of <span>\\(C^+(X)\\)</span>. Also, we prove that every ideal of <span>\\(C^+(X)\\)</span> is closed if and only if <i>X</i> is a <i>P</i>-space. We investigate the connectedness and compactness of <span>\\(C^+(X)\\)</span> under <i>m</i>-topology. It is shown that the component of <span>\\(\\varvec{0}\\)</span> is <span>\\(C_\\psi (X)\\cap C^+(X)\\)</span>. Finally, we show that <span>\\(C_m^+(X)\\)</span> is locally compact, <span>\\(\\sigma \\)</span>-compact and hemicompact if and only if <i>X</i> is finite.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"z-congruences and topologies on $$C^+(X)$$\",\"authors\":\"Pronay Biswas, Sagarmoy Bag, Sujit Kumar Sardar\",\"doi\":\"10.1007/s11117-024-01049-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a Tychonoff space <i>X</i>, <span>\\\\(C^+(X)\\\\)</span> denotes the non-negative real-valued continuous functions on <i>X</i>. We obtain a correlation between <i>z</i>-congruences on the ring <i>C</i>(<i>X</i>) and <i>z</i>-congruences on the semiring <span>\\\\(C^+(X)\\\\)</span>. We give a new characterization of P-spaces via <i>z</i>-congruences on <span>\\\\(C^+(X)\\\\)</span>. The <i>z</i>-congruences on <span>\\\\(C^+(X)\\\\)</span> are shown to have an algebraic nature like <i>z</i>-ideals. We study some topological properties of <span>\\\\(C^+(X)\\\\)</span> under <i>u</i>-topology and <i>m</i>-topology. It is shown that a proper ideal of <span>\\\\(C^+(X)\\\\)</span> is closed under <i>m</i>-topology if and only if it is the intersection of maximal ideals of <span>\\\\(C^+(X)\\\\)</span>. Also, we prove that every ideal of <span>\\\\(C^+(X)\\\\)</span> is closed if and only if <i>X</i> is a <i>P</i>-space. We investigate the connectedness and compactness of <span>\\\\(C^+(X)\\\\)</span> under <i>m</i>-topology. It is shown that the component of <span>\\\\(\\\\varvec{0}\\\\)</span> is <span>\\\\(C_\\\\psi (X)\\\\cap C^+(X)\\\\)</span>. Finally, we show that <span>\\\\(C_m^+(X)\\\\)</span> is locally compact, <span>\\\\(\\\\sigma \\\\)</span>-compact and hemicompact if and only if <i>X</i> is finite.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01049-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01049-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 Tychonoff 空间 X,\(C^+(X)\)表示 X 上的非负实值连续函数。我们得到了环 C(X) 上的 zongruences 与 semiring \(C^+(X)\)上的 zongruences 之间的关联。我们通过 \(C^+(X)\) 上的 z-congruences 给出了 P 空间的新特征。我们证明了 \(C^+(X)\) 上的 z 共轭具有类似于 z 轴的代数性质。我们研究了 \(C^+(X)\) 在 u 拓扑和 m 拓扑下的一些拓扑性质。结果表明,当且仅当\(C^+(X)\)的最大理想的交集是\(C^+(X)\)的最大理想时,\(C^+(X)\)的一个适当理想在 m 拓扑下是封闭的。同时,我们证明当且仅当 X 是一个 P 空间时,\(C^+(X)\) 的每个理想都是封闭的。我们研究了 m 拓扑下 \(C^+(X)\) 的连通性和紧凑性。结果表明,\(\varvec{0}\)的成分是\(C_\psi (X)\cap C^+(X)\)。最后,我们证明了当且仅当 X 有限时,\(C_m^+(X)\) 是局部紧凑的、\(\sigma \)-紧凑的和半紧凑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
z-congruences and topologies on $$C^+(X)$$

For a Tychonoff space X, \(C^+(X)\) denotes the non-negative real-valued continuous functions on X. We obtain a correlation between z-congruences on the ring C(X) and z-congruences on the semiring \(C^+(X)\). We give a new characterization of P-spaces via z-congruences on \(C^+(X)\). The z-congruences on \(C^+(X)\) are shown to have an algebraic nature like z-ideals. We study some topological properties of \(C^+(X)\) under u-topology and m-topology. It is shown that a proper ideal of \(C^+(X)\) is closed under m-topology if and only if it is the intersection of maximal ideals of \(C^+(X)\). Also, we prove that every ideal of \(C^+(X)\) is closed if and only if X is a P-space. We investigate the connectedness and compactness of \(C^+(X)\) under m-topology. It is shown that the component of \(\varvec{0}\) is \(C_\psi (X)\cap C^+(X)\). Finally, we show that \(C_m^+(X)\) is locally compact, \(\sigma \)-compact and hemicompact if and only if X is finite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信