具有 ISR 特性的无限可化群示例

IF 1 3区 数学 Q1 MATHEMATICS
Yongle Jiang, Xiaoyan Zhou
{"title":"具有 ISR 特性的无限可化群示例","authors":"Yongle Jiang, Xiaoyan Zhou","doi":"10.1007/s00209-024-03495-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be <span>\\(S_{\\mathbb {N}}\\)</span>, the finitary permutation (i.e., permutations with finite support) group on the set of positive integers <span>\\(\\mathbb {N}\\)</span>. We prove that <i>G</i> has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every <i>G</i>-invariant von Neumann subalgebra <span>\\(P\\subseteq L(G)\\)</span> is of the form <i>L</i>(<i>H</i>) for some normal subgroup <span>\\(H\\lhd G\\)</span> and in this case, <span>\\(H=\\{e\\}, A_{\\mathbb {N}}\\)</span> or <i>G</i>, where <span>\\(A_{\\mathbb {N}}\\)</span> denotes the finitary alternating group on <span>\\(\\mathbb {N}\\)</span>, i.e., the subgroup of all even permutations in <span>\\(S_{\\mathbb {N}}\\)</span>. This gives the first known example of an infinite amenable group with the ISR property.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An example of an infinite amenable group with the ISR property\",\"authors\":\"Yongle Jiang, Xiaoyan Zhou\",\"doi\":\"10.1007/s00209-024-03495-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be <span>\\\\(S_{\\\\mathbb {N}}\\\\)</span>, the finitary permutation (i.e., permutations with finite support) group on the set of positive integers <span>\\\\(\\\\mathbb {N}\\\\)</span>. We prove that <i>G</i> has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every <i>G</i>-invariant von Neumann subalgebra <span>\\\\(P\\\\subseteq L(G)\\\\)</span> is of the form <i>L</i>(<i>H</i>) for some normal subgroup <span>\\\\(H\\\\lhd G\\\\)</span> and in this case, <span>\\\\(H=\\\\{e\\\\}, A_{\\\\mathbb {N}}\\\\)</span> or <i>G</i>, where <span>\\\\(A_{\\\\mathbb {N}}\\\\)</span> denotes the finitary alternating group on <span>\\\\(\\\\mathbb {N}\\\\)</span>, i.e., the subgroup of all even permutations in <span>\\\\(S_{\\\\mathbb {N}}\\\\)</span>. This gives the first known example of an infinite amenable group with the ISR property.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03495-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03495-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是 \(S_{\mathbb {N}}\),是正整数集合 \(\mathbb {N}}\)上的有限置换(即具有有限支持的置换)群。我们证明了 G 具有阿姆鲁塔姆-蒋(Amrutam-Jiang)著作中提出的不变冯-诺依曼子布拉刚度(简称 ISR)属性。更准确地说,对于某个正常子群 (H\lhd G\ ),每个 G 不变的冯-诺依曼子代数 (P/subseteq L(G)\)都是 L(H) 的形式,在这种情况下:\(H=\{e\}, A_{\mathbb {N}}\) 或 G,其中 \(A_{\mathbb {N}}\) 表示 \(\mathbb {N}}\) 上的有限交替群,即.e.,S_{\mathbb {N}} 中所有偶数排列的子群。这给出了具有 ISR 特性的无限可调和群的第一个已知例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An example of an infinite amenable group with the ISR property

Let G be \(S_{\mathbb {N}}\), the finitary permutation (i.e., permutations with finite support) group on the set of positive integers \(\mathbb {N}\). We prove that G has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every G-invariant von Neumann subalgebra \(P\subseteq L(G)\) is of the form L(H) for some normal subgroup \(H\lhd G\) and in this case, \(H=\{e\}, A_{\mathbb {N}}\) or G, where \(A_{\mathbb {N}}\) denotes the finitary alternating group on \(\mathbb {N}\), i.e., the subgroup of all even permutations in \(S_{\mathbb {N}}\). This gives the first known example of an infinite amenable group with the ISR property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信