{"title":"具有 ISR 特性的无限可化群示例","authors":"Yongle Jiang, Xiaoyan Zhou","doi":"10.1007/s00209-024-03495-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be <span>\\(S_{\\mathbb {N}}\\)</span>, the finitary permutation (i.e., permutations with finite support) group on the set of positive integers <span>\\(\\mathbb {N}\\)</span>. We prove that <i>G</i> has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every <i>G</i>-invariant von Neumann subalgebra <span>\\(P\\subseteq L(G)\\)</span> is of the form <i>L</i>(<i>H</i>) for some normal subgroup <span>\\(H\\lhd G\\)</span> and in this case, <span>\\(H=\\{e\\}, A_{\\mathbb {N}}\\)</span> or <i>G</i>, where <span>\\(A_{\\mathbb {N}}\\)</span> denotes the finitary alternating group on <span>\\(\\mathbb {N}\\)</span>, i.e., the subgroup of all even permutations in <span>\\(S_{\\mathbb {N}}\\)</span>. This gives the first known example of an infinite amenable group with the ISR property.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An example of an infinite amenable group with the ISR property\",\"authors\":\"Yongle Jiang, Xiaoyan Zhou\",\"doi\":\"10.1007/s00209-024-03495-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be <span>\\\\(S_{\\\\mathbb {N}}\\\\)</span>, the finitary permutation (i.e., permutations with finite support) group on the set of positive integers <span>\\\\(\\\\mathbb {N}\\\\)</span>. We prove that <i>G</i> has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every <i>G</i>-invariant von Neumann subalgebra <span>\\\\(P\\\\subseteq L(G)\\\\)</span> is of the form <i>L</i>(<i>H</i>) for some normal subgroup <span>\\\\(H\\\\lhd G\\\\)</span> and in this case, <span>\\\\(H=\\\\{e\\\\}, A_{\\\\mathbb {N}}\\\\)</span> or <i>G</i>, where <span>\\\\(A_{\\\\mathbb {N}}\\\\)</span> denotes the finitary alternating group on <span>\\\\(\\\\mathbb {N}\\\\)</span>, i.e., the subgroup of all even permutations in <span>\\\\(S_{\\\\mathbb {N}}\\\\)</span>. This gives the first known example of an infinite amenable group with the ISR property.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03495-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03495-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An example of an infinite amenable group with the ISR property
Let G be \(S_{\mathbb {N}}\), the finitary permutation (i.e., permutations with finite support) group on the set of positive integers \(\mathbb {N}\). We prove that G has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every G-invariant von Neumann subalgebra \(P\subseteq L(G)\) is of the form L(H) for some normal subgroup \(H\lhd G\) and in this case, \(H=\{e\}, A_{\mathbb {N}}\) or G, where \(A_{\mathbb {N}}\) denotes the finitary alternating group on \(\mathbb {N}\), i.e., the subgroup of all even permutations in \(S_{\mathbb {N}}\). This gives the first known example of an infinite amenable group with the ISR property.