Amiran Gogatishvili, Bohumír Opic, Sergey Tikhonov, Walter Trebels
{"title":"K 函数和平滑模量不等式的统一方法","authors":"Amiran Gogatishvili, Bohumír Opic, Sergey Tikhonov, Walter Trebels","doi":"10.1007/s00209-024-03484-x","DOIUrl":null,"url":null,"abstract":"<p>The paper provides a detailed study of crucial inequalities for smoothness and interpolation characteristics in rearrangement invariant Banach function spaces. We present a unified approach based on Holmstedt formulas to obtain these estimates. As examples, we derive new inequalities for moduli of smoothness and <i>K</i>-functionals in various Lorentz spaces.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified approach to inequalities for K-functionals and moduli of smoothness\",\"authors\":\"Amiran Gogatishvili, Bohumír Opic, Sergey Tikhonov, Walter Trebels\",\"doi\":\"10.1007/s00209-024-03484-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper provides a detailed study of crucial inequalities for smoothness and interpolation characteristics in rearrangement invariant Banach function spaces. We present a unified approach based on Holmstedt formulas to obtain these estimates. As examples, we derive new inequalities for moduli of smoothness and <i>K</i>-functionals in various Lorentz spaces.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03484-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03484-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文详细研究了重排不变巴拿赫函数空间中平滑性和插值特性的关键不等式。我们提出了一种基于 Holmstedt 公式的统一方法来获得这些估计值。作为例子,我们推导了各种洛伦兹空间中平滑性和 K 函数的模量的新不等式。
A unified approach to inequalities for K-functionals and moduli of smoothness
The paper provides a detailed study of crucial inequalities for smoothness and interpolation characteristics in rearrangement invariant Banach function spaces. We present a unified approach based on Holmstedt formulas to obtain these estimates. As examples, we derive new inequalities for moduli of smoothness and K-functionals in various Lorentz spaces.